Задачи на движение по прямой и по окружности
В задачах на движение по прямой часто надо отыскать среднюю скорость транспортного средства.
Средняя скорость – это величина, равная отношению пути, пройденного телом, ко времени, за которое пройден этот путь.
$v_{ср}={S_{общий}}/{t_{общее}}$
Пример:
Первые $140$ км автомобиль ехал со скоростью $70$ км/ч, следующие $220$ км — со скоростью $80$ км/ч, а затем $30$ км — со скоростью $120$ км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Решение:
Для простоты решения задачи сделаем таблицу.
$S_1=140км$ | $S_2=220км$ | $S_3=30км$ |
$v_1=70$км/ч | $v_2=80$км/ч | $v_3=120$км/ч |
$t_1-?$ | $t_2-?$ | $t_3-?$ |
Получилось три участка пути, про каждый участок мы знаем его путь и скорость, но для расчета средней скорости необходимо знать путь и время каждого участка. Найдем время каждого участка пути, для этого разделим путь на скорость.
$t_1={S_1}/{v_1}={140}/{70}=2$ часа
$t_2={S_2}/{v_2}={220}/{80}=2.75$ часа
$t_3={S_3}/{v_3}={30}/{120}=0.25$ часа
$v_{ср}={S_1+S_2+S_3}/{t_1+t_2+t_3}={140+220+30}/{2+2.75+0.25}={390}/{5}=78$ км/ч
Ответ: $78$ км/ч
Иногда встречаются такие задачи на движение, в которых учитываются размеры транспортного средства. Чаще всего в таких задачах необходимо рассчитать длину поезда, например.
Поезд, двигаясь равномерно со скоростью $60$ км/ч, проезжает мимо платформы, длина которой равна $200$ метрам, за $3$ минуты. Найдите длину поезда в метрах.
Решение:
Считается, что поезд проедет полностью мимо платформы, если он проедет длину платформы и еще свою длину.
Найдем расстояние, которое поезд проедет за три минуты. Время переведем в секунды и умножим на скорость поезда, которую переведем из км/ч в м/с.
$3$ минуты $=3·60=180$ секунд
$60$ км/ч$={60}/{3.6}={600}/{36}={50}/{3}$ м/с
$S=v·t={50·180}/{3}=3000$ метров
Чтобы найти длину поезда из всего пройденного пути за $3$ минуты вычтем длину платформы:
$l=3000-200=2800$ метров.
Ответ: $2800$
Пример:
Два велосипедиста одновременно отправились в пробег протяжённостью $84$ километра. Первый ехал со скоростью, на $5$ км/ч большей скорости второго, и прибыл к финишу на $5$ часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.
Решение:
Пусть $х$ км/ч –скорость второго велосипедиста, тогда $(х+5)$ км/ч – скорость первого велосипедиста.
Создаем стандартную таблицу и столбец $«v»$ заполняем данными с неизвестными.
$S$(км) | $v$(км) | $t$(ч) | |
Первый велосипедист | $(x+5)$ | ||
Второй велосипедист | $x$ |
Так как расстояние, которое проехали велосипедисты одинаково и равно $84$ км, заполняем столбец $«S»$.
$S$(км) | $v$(км) | $t$(ч) | |
Первый велосипедист | $84$ | $(x+5)$ | |
Второй велосипедист | $84$ | $x$ |
Третий столбец заполняем по формуле $t={S}/{v}$.
$S$(км) | $v$(км) | $t$(ч) | |
Первый велосипедист | $84$ | $(x+5)$ | ${84}/{(x+5)}$ |
Второй велосипедист | $84$ | $x$ | ${84}/{x}$ |
Именно содержимое третьего столбца будем использовать для составления уравнения к задаче. По условию задачи разница между временами движения велосипедистов равна $5$ часов. Дольше в пути находился второй велосипедист, следовательно, из большего времени отнимаем меньшее время и все это равно разнице времен.
${84}/{х}-{84}/{(х+5)}=5$
Перенесем все слагаемые в левую сторону уравнения
${84}/{х}-{84}/{(х+5)}-5=0$
Приведем все слагаемые к общему знаменателю $х(х+5)$, тогда к первой дроби дополнительный множитель равен $(х+5)$, ко второй $х$, а к третьему слагаемому $(х^2+5х)$.Получаем:
${84х+420-84х-5х^2-25х}/{х(х+5)}=0$
Далее проговариваем: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
$84х+420-84х-5х^2-25х=0; х(х+5)≠0$
Найдем сначала корни знаменателя (ОДЗ дроби)
$х(х+5)≠0$
$х≠0$ или $х+5≠0$
$х≠0$ или $х≠-5$
Найдем корни числителя.
$84х+420-84х-5х^2-25х=0;$
Приведем подобные слагаемые и расставим поставим их в порядке убывания степеней
$-5х^2-25х+420=0$
Разделим уравнение на $(-5)$
$х^2+5х-84=0$
По теореме Виета
$х_1=-12, х_2=7$
$х_1=-12$ нам не подходит, так как отрицательная величина.
$х_2=7$ км/ч – скорость велосипедиста.
Ответ: $7$
Некоторые нюансы в задачах с круговым движением:
- В задачах на движение по окружности желательно делать рисунок, чтобы расставить величины и увидеть взаимосвязь между транспортными средствами.
- Если транспортные средства начали двигаться из одной точки в диаметрально противоположных направлениях, то между ними расстояние равное половине длины окружности.
- Если в задаче сказано, что транспортные средства двигаются в одном направлении, то необходимо узнать их скорость опережения: для этого из большей скорости вычитается меньшая.
- Любую задачу на круговое движение можно представить как задачу на прямолинейном отрезке, мысленно развернув круговую трассу в прямую.
Пример:
Из одной точки круговой трассы, длина которой равна $18$ км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна $92$ км/ч, и через $45$ минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.
Решение:
Сделаем рисунок к задаче, для этого мысленно развернем круговую трассу в прямую.
$S=18$ км
$t=45$мин$={3}/{4}$часа
Пусть $х$ км/ч - скорость второго автомобиля.
Скорость опережения равна разности скоростей.
Тогда скорость опережения равна $v_{опережения}=(92-х)$. Так как первый автомобиль обгонит второй на один круг за $45$ минут, то скорость опережения можно выразить еще одним способом: для этого длину круга надо разделить на время опережения.
Не забываем перевести время из минут в часы $45$минут$={45}/{60}={3}/{4}$часа
$v_{опережения}={S}/{t}={18}/{{3}/{4}}={18·4}/{3}=24$
Так как мы разными записями выразили скорость опережения, то для составления уравнения приравняем обе записи друг к другу.
$92-х=24$
$-х=24-92$
$х=68$ км/ч – скорость второго автомобиля.
Ответ: $68$