Вычисления и преобразования выражений
Выражения, содержащие знак радикала (корень), называются иррациональными.
Арифметическим корнем натуральной степени $n$ из неотрицательного числа а называется некоторое неотрицательное число, при возведении которого в степень $n$ получается число $а$.
$(√^n{a})^n=a$
В записи $√^n{a}$, «а» называется подкоренным числом, $n$ - показателем корня или радикала.
Свойства корней $n$-ой степени при $а≥0$ и $b≥0$:
1. Корень произведения равен произведению корней
$√^n{a∙b}=√^n{a}∙√^n{b}$
Пример:
Вычислить $√^5{5}∙√^5{625}$
Решение:
Корень произведения равен произведению корней и наоборот: произведение корней с одинаковым показателем корня равно корню из произведения подкоренных выражений
$√^n{a}∙√^n{b}=√^n{a∙b}$
$√^5{5}∙√^5{625}=√^5{5∙625}=√^5{5∙5^4}=√^5{5^5}=5$
Ответ: $5$
2. Корень из дроби – это отдельно корень из числителя, отдельно из знаменателя
$√^n{{a}/{b}}={√^n{a}}/{√^n{b}}$, при $b≠0$
3. При возведении корня в степень, в эту степень возводится подкоренное выражение
$(√^n{a})^k=√^n{a^k}$
4. Если $а≥0$ и $n,k$ - натуральные числа, больше $1$, то справедливо равенство.
$√^n{√^k{a}}=√^{n∙k}a$
5. Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится.
$√^{n∙m}a^{k∙m}=√^n{a^k}$
6. Корень нечетной степени можно извлекать из положительных и отрицательных чисел, а корень четной степени – только из положительных.
7. Любой корень можно представить в виде степени с дробным (рациональным) показателем.
$√^n{a^k}=a^{{k}/{n}}$
Пример:
Найдите значение выражения ${√{9∙√^11{с}}}/{√^11{2048∙√с}}$ при $с>0$
Решение:
Корень произведения равен произведению корней
${√{9∙√^11{с}}}/{√^11{2048∙√с}}={√9∙√{√^11{с}}}/{√^11{2048}∙√^11{√с}}$
Корни из чисел мы можем извлечь сразу
${√9∙√{√^11{с}}}/{√^11{2048}∙√^11{√с}}={3∙√{√^11{с}}}/{2∙√^11{√с}}$
Далее применим формулу
$√^n{√^k{a}}=√^{n∙k}a$
${3∙√{√^11{с}}}/{2∙√^11{√с}}={3∙√^22{с}}/{2∙√^22{с}}$
Корни $22$ степени из $с$ мы сокращаем и получаем ${3}/{2}=1,5$
Ответ: $1,5$
Если у радикала с четным показателем степени мы не знаем знак подкоренного выражения, то при извлечении корня выходит модуль подкоренного выражения.
Пример:
Найдите значение выражения $√{(с-7)^2}+√{(с-9)^2}$ при $7 < c < 9$
Решение:
Если над корнем не стоит показатель, то это означает, что мы работаем с квадратным корнем. Его показатель равен двум, т.е. четный. Если у радикала с четным показателем степени мы не знаем знак подкоренного выражения, то при извлечении корня выходит модуль подкоренного выражения.
$√{(с-7)^2}+√{(с-9)^2}=|c-7|+|c-9|$
Определим знак выражения, стоящего под знаком модуля, исходя из условия $7 < c < 9$
Для проверки возьмем любое число из заданного промежутка, например, $8$
Проверим знак каждого модуля
$8-7>0$
$8-9<0$, при раскрытии модуля пользуемся правилом: модуль положительного числа равен самому себе, отрицательного числа - равен противоположному значению. Так как у второго модуля знак отрицательный, при раскрытии меняем знак перед модулем на противоположный.
$|c-7|+|c-9|=(с-7)-(с-9)=с-7-с+9=2$
Ответ: $2$
Свойства степеней с рациональным показателем:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
$a^n∙a^m=a^{n+m}$
2. При возведении степени в степень основание остается прежним, а показатели перемножаются
$(a^n)^m=a^{n∙m}$
3. При возведении в степень произведения в эту степень возводится каждый множитель
$(a∙b)^n=a^n∙b^n$
4. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
$({a}/{b})^n={a^n}/{b^n}$
Дроби
Практика: решай 6 задание и тренировочные варианты ЕГЭ по математике (профиль)