Равнобедренные треугольники

Разбор сложных заданий в тг-канале:

Равнобедренный треугольник - это такой треугольник, у которого две стороны равны. Равные стороны называются боковыми. Третья сторона называется основанием.

Свойства:

1. В равнобедренном треугольнике углы при основании равны.

2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

3. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.

4. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

5. Углы, противолежащие равным сторонам равнобедренного треугольника, всегда острые.

6. В равнобедренном треугольнике:

- биссектрисы, проведенные из вершин при основании, равны;

- высоты, проведенные из вершин при основании, равны;

- медианы, проведенные из вершин при основании, равны.

7. Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане, проведенных к основанию.

8. Вписанная окружность точкой касания делит основание пополам.



Внешним углом треугольника называется угол, смежный с каким-либо углом этого треугольника.

Внешний угол треугольника равен сумме двух углов, не смежных с ним.

$∠BCD$ - внешний угол треугольника $АВС$.

$∠BCD=∠A+∠B$



Теорема Пифагора.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$



Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$.

Для острого угла $В$: $АС$ - противолежащий катет; $ВС$ - прилежащий катет.

Для острого угла $А$: $ВС$ - противолежащий катет; $АС$ - прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом ($ctg$) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

Пример:

В прямоугольном треугольнике $АВС$ для острого угла $В$:

$sin⁡B={AC}/{AB};$

$cos⁡B={BC}/{AB};$

$tg B={AC}/{BC};$

$ctg B={BC}/{AC}$.

  1. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  2. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  3. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

$sin BOA=sin BOC;$

$cos BOA= - cos BOC;$

$tg BOA= - tg BOC;$

$ctg BOA= - ctg BOC.$

Пример:

В треугольнике $ABC$ $AB=BC, AH$ — высота, $AC=34, cos ∠BAC=0.15$. Найдите $CH$.

Решение:

Так как треугольник $АВС$ равнобедренный, то $∠A=∠С$ (как углы при основании)

Косинусы равных углов равны, следовательно, $cos∠BAC=cos∠ВСА=0.15$

Рассмотрим прямоугольный треугольник $АНС$.

Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Распишем косинус $∠НСА$ (он же $∠ВСА$) по определению:

$cos⁡∠НСА={НС}/{АС}={НС}/{34}=0.15$

Из последнего равенства найдем $НС$, для этого $0.15$ представим в виде обыкновенной дроби и воспользуемся свойством пропорции:

${НС}/{34}={15}/{100}$

$НС={34·15}/{100}=5.1$

Ответ: $5.1$

Теорема Менелая:

Если на сторонах $ВС, АВ$ и продолжении стороны $АС$ треугольника $АВС$ за точку $С$ отмечены соответственно $А_1,С_1,В_1$, лежащие на одной прямой, то

${АС_1}/{С_1 В}·{ВА_1}/{А_1 С}·{СВ_1}/{В_1 А}=1$

Теорема синусов.

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sin⁡α}={b}/{sin⁡β}={c}/{sin⁡γ}=2R$, где $R$ - радиус описанной около треугольника окружности.

Пример:

В треугольнике $АВС$ $ВС=16, sin∠A={4}/{5}$. Найдите радиус окружности, описанной вокруг треугольника $АВС$.

Решение:

Воспользуемся теоремой синусов:

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности

${ВС}/{sin⁡A}=2R$

Далее подставим числовые данные и найдем $R$

${16·5}/{4}=2R$

$R={16·5}/{4·2}=10$

Ответ: $10$

Теорема косинусов.

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα.$

Практика: решай 6 задание и тренировочные варианты ЕГЭ по математике (профиль)

Составим твой персональный план подготовки к ЕГЭ

Хочу!