Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ

Треугольник

Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки - его сторонами.

На рисунке:

$А,В,С$ - вершины треугольника.

$АВ,ВС$ и $АС$ – стороны треугольника.

Виды треугольников по величине углов:

1. Остроугольный треугольник - такой треугольник, в котором все углы меньше $90°$, т.е. острые. 

2. Прямоугольный треугольник - треугольник, имеющий прямой угол. 

3. Тупоугольный треугольник - треугольник, содержащий тупой угол, т.е. угол от $90°$ до $180°$. 

Виды треугольников по соотношению сторон:

1. Равносторонний (правильный) треугольник – это такой треугольник, у которого все стороны и углы равны.

2. Равнобедренный треугольник - это такой треугольник, у которого две стороны равны. Равные стороны называются боковыми. Третья сторона называется основанием. 

3. Разносторонний треугольник – это такой треугольник, у которого длины всех сторон разные. 

Медиана, биссектриса, высота

Медиана – это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника пересекаются в одной точке $O$, эта точка делит каждую медиану в отношении $2:1$, считая от вершины.

Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника. 

Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону (или её продолжение). Эта сторона называется основанием треугольника. 

Основные свойства треугольников:

  1. Сумма всех углов в треугольнике равна $180°$.
  2. В равнобедренном треугольнике углы при основании равны.
  3. В равнобедренном треугольнике высота, проведенная к основанию, одновременно является медианой и биссектрисой.
  4. В равностороннем треугольнике все углы по $60°$.
  5. Внешний угол треугольника равен сумме двух углов, не смежных с ним.
  6. Средняя линия треугольника параллельна основанию и равна его половине. 

$MN$ - средняя линия, так как соединяет середины соседних сторон.

$MN‖AC, MN={AC}/{2}$



Площадь треугольника:


  1. $S={a∙h_a}/{2}$, где $h_a$ - высота, проведенная к стороне $а$.
  2. $S={a∙b∙sin⁡α}/{2}, где $a,b$ - соседние стороны, $α$ - угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ - это полупериметр $p={a+b+c}/{2}$.
  4. $S=p∙r$, где $r$ - радиус вписанной окружности.
  5. $S={a∙b∙c}/{4R}$, где $R$ - радиус описанной окружности.
  6. Для равностороннего треугольника $S={a^{2}√3}/{4}$, где $а$ - длина стороны.
  7. В прямоугольном треугольнике $S={a∙b}/{2}$, где $а,b$ - катеты.



Прямоугольный треугольник

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла. 

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.
  3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
  4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.
  5. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$. (Рис.14)
  6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями которых являются катеты данного треугольника. (Рис.14)

Один острый угол прямоугольного треугольника на $44°$ больше другого острого угла. Найдите больший острый угол.

Решение:

В прямоугольном треугольнике $АВС$ $∠А$ и $∠В$ – острые.

Пусть $∠ А – х$, тогда $∠ В - (х+44)$.

Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

На основании этого правила, составим и решим уравнение:

$х+х+44=90$

$2х+44=90$

$2х=90-44$

$2х=46$

$х=23$

Угол $В$ больший в этом треугольнике, через $«х»$ он записывался как, $х+44$, следовательно, $∠В=23+44=67°$.

Ответ: $67$



Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. 

$АС^2+ВС^2=АВ^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$ 

Для острого угла $В$: $АС$ - противолежащий катет; $ВС$ - прилежащий катет.

Для острого угла $А$: $ВС$ - противолежащий катет; $АС$ - прилежащий катет.

  1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. Основное тригонометрическое тождество: $sin^2x+cos^2x=1$
  6. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  7. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  8. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

В треугольнике $АВС$ угол $С$ прямой, гипотенуза равна $39, cos⁡B={5}/{13}$.

Найдите $АС$.

Решение:

Так как нам известен cos угла $В$, то распишем его по определению: косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. В треугольнике $АВС, АВ$ - гипотенуза, которая равна $39$. $CB$ – прилежащий катет к углу $В$.

$cos⁡B={CB}/{AB}={CB}/{39}={5}/{13}$

Из последних двух равенств получаем пропорцию:

${CB}/{39}={5}/{13}$

Для нахождения $CВ$ воспользуемся основным свойством пропорции: произведение крайних членов пропорции равно произведению средних членов пропорции:

$13∙СВ=5∙39$

Поделим обе части на $13$

$СВ={5∙39}/{13}={5∙3}/{1}=15$

Катет $АС$ найдем по теореме Пифагора.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

$АС^2+15^2=39^2$

$АС^2=39^2-15^2=(39-15)(39+15)=24∙54=1296$

$АС=36$

Ответ: $36$

Твой план подготовки к ЕГЭ 2019 почти готов

Построить свой план

всего за 3 минуты