Планиметрия. Треугольники
Прямоугольный треугольник - это треугольник, у которого один угол прямой (равен градусов).
Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника:
1. Сумма острых углов в прямоугольном треугольнике равна градусов.
2. Если в прямоугольном треугольнике один из острых углов равен градусов, то этот треугольник равнобедренный.
3. Катет прямоугольного треугольника, лежащий напротив угла в градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
4. Катет прямоугольного треугольника, лежащий напротив угла в градусов, равен малому катету этого треугольника, умноженному на .
5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на
6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности
7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике , с прямым углом
Для острого угла : - противолежащий катет; - прилежащий катет.
Для острого угла : - противолежащий катет; - прилежащий катет.
1. Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
2. Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
3. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
4. Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
В прямоугольном треугольнике для острого угла :
5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.
Значения тригонометрических функций некоторых углов:
Площадь прямоугольного треугольника равна половине произведения его катетов
Пример:
В треугольнике угол равен градусов, . Найдите косинус внешнего угла при вершине .
Решение:
Так как внешний угол при вершине и угол смежные, то
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла :
Катет мы можем найти по теореме Пифагора:
Подставим найденное значение в формулу косинуса
Ответ:
Пример:
В треугольнике угол равен градусов, . Найдите .
Решение:
Распишем синус угла по определению:
Так как мы знаем длину катета и он не участвует в записи синуса угла , то можем и взять за части и соответственно.
Применим теорему Пифагора, чтобы отыскать
Так как длина составляет пять частей, то
Ответ:
В прямоугольном треугольнике с прямым углом и высотой :
Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.
В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.
Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.
Равнобедренный треугольник - это такой треугольник, у которого две стороны равны. Равные стороны называются боковыми. Третья сторона называется основанием.
Свойства:
1. В равнобедренном треугольнике углы при основании равны.
2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
3. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
4. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
5. Углы, противолежащие равным сторонам равнобедренного треугольника, всегда острые.
6. В равнобедренном треугольнике:
- биссектрисы, проведенные из вершин при основании, равны;
- высоты, проведенные из вершин при основании, равны;
- медианы, проведенные из вершин при основании, равны.
7. Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане, проведенных к основанию.
8. Вписанная окружность точкой касания делит основание пополам.
Внешним углом треугольника называется угол, смежный с каким-либо углом этого треугольника.
Внешний угол треугольника равен сумме двух углов, не смежных с ним.
- внешний угол треугольника .
Теорема Пифагора.
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике , с прямым углом .
Для острого угла : - противолежащий катет; - прилежащий катет.
Для острого угла : - противолежащий катет; - прилежащий катет.
- Синусом () острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом () острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом () острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
- Котангенсом () острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
Пример:
В прямоугольном треугольнике для острого угла :
.
- В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
- Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
- Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.
Пример:
В треугольнике — высота, . Найдите .
Решение:
Так как треугольник равнобедренный, то (как углы при основании)
Косинусы равных углов равны, следовательно,
Рассмотрим прямоугольный треугольник .
Косинусом () острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
Распишем косинус (он же ) по определению:
Из последнего равенства найдем , для этого представим в виде обыкновенной дроби и воспользуемся свойством пропорции:
Ответ:
Теорема Менелая:
Если на сторонах и продолжении стороны треугольника за точку отмечены соответственно , лежащие на одной прямой, то
Теорема синусов.
Во всяком треугольнике стороны относятся как синусы противолежащих углов:
, где - радиус описанной около треугольника окружности.
Пример:
В треугольнике . Найдите радиус окружности, описанной вокруг треугольника .
Решение:
Воспользуемся теоремой синусов:
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности
Далее подставим числовые данные и найдем
Ответ:
Теорема косинусов.
Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
Треугольники общего вида.
Основные свойства треугольников:
- Сумма всех углов в треугольнике равна .
- В равнобедренном треугольнике углы при основании равны.
- В равнобедренном треугольнике высота, проведенная к основанию, одновременно является медианой и биссектрисой.
- В равностороннем треугольнике все углы по .
- Внешний угол треугольника равен сумме двух углов, не смежных с ним.
- Средняя линия треугольника параллельна основанию и равна его половине.
- средняя линия, так как соединяет середины соседних сторон.
// ,
Биссектриса - это линия, которая делит угол пополам.
Свойства биссектрисы:
- В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.
- Три биссектрисы в треугольнике пересекаются в одной точке, эта точка является центром вписанной в треугольник окружности.
- Биссектрисы смежных углов перпендикулярны.
- В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.
Медиана - это линия, проведенная из вершины треугольника к середине противоположной стороны.
Свойства медиан:
1. Медиана делит треугольник на два равновеликих треугольника, т.е. на два треугольника, у которых площади равны.
2. Медианы пересекаются в одной точке и этой точкой делятся в отношении два к одному, считая от вершины.
3. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы и радиусу описанной около этого треугольника окружности.
Высота в треугольнике - это линия, проведенная из вершины треугольника к противоположной стороне под углом в 90 градусов.
- высота
Свойства высот:
1. Три высоты (или их продолжения) пересекаются в одной точке.
2. Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.
3. Высоты треугольника обратно пропорциональны его сторонам:
Прямоугольный треугольник и его свойства:
В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника:
1. Сумма острых углов в прямоугольном треугольнике равна 90 градусов.
2. Катет прямоугольного треугольника, лежащий напротив угла в 30 градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
3. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности (R)
4. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями которых являются катеты данного треугольника.
5. В прямоугольном треугольнике радиус вписанной окружности равен: , где и – это катеты, – гипотенуза.
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике , с прямым углом
Для острого угла - противолежащий катет; - прилежащий катет.
Для острого угла - противолежащий катет; - прилежащий катет.
- Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
- Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
- В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
- Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
- Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения
Значения тригонометрических функций некоторых углов:
Тригонометрические тождества:
1. Основное тригонометрическое тождество:
2. Связь между тангенсом и косинусом одного и того же угла:
3. Связь между котангенсом и синусом одного и того же угла:
Подобие треугольников
Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.
Число - коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)
- Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия .
- Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Признаки подобия треугольников:
- Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
- Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
- Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Теорема синусов
Во всяком треугольнике стороны относятся как синусы противолежащих углов:
, где - радиус описанной около треугольника окружности.
Пример:
В треугольнике . Найдите радиус окружности, описанной вокруг треугольника .
Решение:
Воспользуемся теоремой синусов:
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности
Далее подставим числовые данные и найдем
Ответ:
Теорема косинусов
Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
Формулы площадей треугольника:
- , где - высота, проведенная к стороне
- , где - соседние стороны, - угол между этими соседними сторонами.
Бесплатный интенсив по математике (профиль)
✅ Сможешь увеличить свой результат с нуля на 40 баллов, решишь 100+ прототипов
✅ Изучишь основные темы по профильной математике, узнаешь лайфхаки и разберёшься в структуре всего экзамена
✅ Наработаешь твердую базу и заполнишь пробелы предыдущих лет
У тебя будет:
- 1 онлайн-вебинар по 1 часу в неделю.
- Домашка после каждого веба без дедлайна (делай, когда тебе удобно).
- Скрипты, конспекты, множество полезных материалов.
- Удобный личный кабинет: расписание вебов, домашки, твой прогресс и многое другое.
- Отдельная беседа в ТГ с сокурсниками и преподавателями.