Логарифмические уравнения
Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.
$log_{2}8 = 3$, т.к. $2^3 = 8;$
$log_3{1}/{27}=-3$, т.к $3^{-3} = {1}/{27}$.
Особенно можно выделить три формулы:
$log_{a}a=1;$
$log_{a}1=0;$
$log_{a}a^b=b.$
Основное логарифмическое тождество:
$a^{log_{a}b}=b$
Это равенство справедливо при $b> 0, a> 0, a≠ 1$
$4^{log_{4}5}=5$;
$3^{-2log_{3}5}=(3^{log_{3}5})^{-2}=5^{-2}={1}/{25}$
Некоторые свойства логарифмов
Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.
1. Для любого действительного числа $m$ справедливы равенства:
$log_{а}b^m=mlog_{a}b;$
$log_{a^m}b={1}/{m}log_{a}b.$
$log_{3}3^10=10log_{3}3=10;$
$log_{5^3}7={1}/{3}log_{5}7;$
$log_{3^7}4^5={5}/{7}log_{3}4;$
2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_{a}b>0$, а если по разные, то $log_{a}b<0$.
Десятичным логарифмом числа называют логарифм этого числа по основанию $10$ и пишут $lgb$ вместо $log_{10}b$.
Натуральным логарифмом числа называют логарифм этого числа по основанию $е$, где $е$ – иррациональное число, приближенно равное $2,7$. При этом пишут $ln b$, вместо $log_{e}b$
Логарифмические уравнения
Логарифмическими уравнениями называют уравнения вида
$log_{a}f(x)=log_{a}g(x)$, где $а$ – положительное число, отличное от $1$, и уравнения, сводящиеся к этому виду.
После нахождения корней логарифмического уравнения необходимо проверить условие: подлогарифмическое выражение должно быть больше $0$.
Можно выделить несколько основных видов логарифмических уравнений:
1. Простейшие логарифмические уравнения: $log_{a}x=b$. Решение данного вида уравнений следует из определения логарифма, т.е. $x=a^b$ и $х > 0$
$log_{2}x=3$
Представим обе части уравнения в виде логарифма по основанию 2
$log_{2}x=log_{2}2^3$
Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.
$x = 8$
Ответ: $х = 8$
2. Уравнения вида: $log_{a}f(x)=log_{a}g(x)$. Т.к. основания одинаковые, то приравниваем подлогарифмические выражения:
$\{\table \f(x)=g(x); \f(x)>0; \g(x)>0;$
$log_3(x^2-3x-5)=log_3(7-2x)$
Т.к. основания одинаковые, то приравниваем подлогарифмические выражения
$x^2-3x-5=7-2x$
Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые
$x^2-x-12=0$
$x_1=4,x_2= -3$
Проверим найденные корни по условиям: $\{\table \x^2-3x-5>0; \7-2x>0;$
При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень
Ответ: $х= -3$
3. Уравнения квадратного вида ${log_a^2}x+log_{a}x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению.
4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.
Решить уравнение $log_5log_2(x+1)=1$
Решение:
Сделаем в обеих частях уравнения логарифмы по основанию $5$
$log_5(log_2(x+1))=log_{5}5$
Т.к. основания одинаковые, то приравниваем подлогарифмические выражения
$log_2(x+1)=5$
Далее представим обе части уравнения в виде логарифма по основанию $2$
$log_2(x+1)=log_{2}2^5$
$x+1=32$
$x=31$
ОДЗ данного уравнения $x+1>0$
Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.
Ответ: $31$