Планиметрия. Четырехугольники

Теория к заданию 1 из ЕГЭ по математике (профиль)

Разбор сложных заданий в тг-канале:

Четырехугольники

Параллелограмм - это четырехугольник, у которого противоположные стороны попарно параллельны.

$АВ││CD;BC││AD.$

Свойства параллелограмма:

1. В параллелограмме противоположные стороны и углы попарно равны.

$АВ=CD;BC=AD$

$∠А=∠С; ∠В=∠D$.

2. Диагональ делит параллелограмм на два равных треугольника.

$∆ABD=∆BCD.$

3. Диагонали точкой пересечения делятся пополам.

$BO=OD; AO=OC.$

4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

$BD^2+AC^2=2(AB^2+AD^2)$

5. Биссектриса угла в параллелограмме отсекает от него равнобедренный треугольник.

$∆АВК$ - равнобедренный.

6. В параллелограмме биссектрисы углов, прилежащих к одной стороне (соседних углов), пересекаются под углом в $90°$.

Площадь параллелограмма:

  1. Площадь параллелограмма равна произведению двух соседних сторон на синус угла между ними. $S=a·b·sinα$, где $а$ и $b$ - длины сторон параллелограмма, а $α$ - угол между этими сторонами.
  2. Площадь параллелограмма равна произведению основания на высоту. $S=h_a·a$, где $a$ - сторона параллелограмма, $h_a$ - высота, проведенная к стороне $a$.

Пример:

Определите синус острого угла параллелограмма, если его большая высота равна $7$, а стороны $10$ и $14$.

Решение:

Площадь параллелограмма равна произведению двух соседних сторон на синус угла между ними.

$S=a·b·sinα$, из этой формулы можем выразить синус угла.

$sin⁡α={S}/{a·b}$

Стороны параллелограмма нам известны, осталось вычислить площадь. Площадь параллелограмма можно вычислить как произведение высоты на основание. Нам известна большая высота параллелограмма, а большая высота опускается к меньшей стороне параллелограмма, следовательно, $S=7·10=70$.

Подставим все известные данные в формулу синуса:

$sinα={S}/{a·b}={70}/{14·10}=0.5$

Ответ: $0.5$

Прямоугольник - это параллелограмм, у которого все углы прямые.

Свойства прямоугольника:

  1. Все свойства параллелограмма (Так как прямоугольник – это тот же параллелограмм, только особенный, поэтму у него присутствуют все свойства параллелограмма).
  2. Диагонали прямоугольника равны. $BD=AC$.

Площадь прямоугольника равна половине произведения смежных (соседних) сторон.

$S=a·b$, где $а$ и $b$ - смежные стороны.

Ромб - это параллелограмм, у которого все стороны равны.

Свойства ромба:

  1. Все свойства параллелограмма.
  2. Диагонали ромба пересекаются под прямым углом. $BD⊥AC$.
  3. Диагонали ромба являются биссектрисами углов.

Площадь ромба:

  1. Площадь ромба равна половине произведения его диагоналей. $S={d_1·d_2}/2$, где $d_1$ и $d_2$ - диагонали ромба
  2. Площадь ромба равна произведению квадрата стороны на синус острого угла ромба. $S=a^2·sinα$, где $а$ - длина стороны ромба, а $α$ - угол между соседними сторонами.

Квадрат – это прямоугольник, у которого все стороны равны.

Свойства квадрата:

  1. Все свойства прямоугольника.
  2. Все свойства ромба.

Площадь квадрата:

  1. $S=a^2$, где $а$ - сторона квадрата.
  2. $S={d^2}/{2}$, где $d$ - диагональ квадрата.

Трапеция - это четырехугольник, у которого две стороны параллельны, а две другие нет.

Параллельные стороны называются основаниями: $ВС$ и $AD$ - основания.

Непараллельные стороны называются боковыми сторонами: $АВ$ и $CD$ – боковые стороны.

Отрезок, соединяющий середины боковых сторон трапеции, называется средней линией трапеции.

Свойства средней линии трапеции:

1. Средняя линия параллельна основаниям трапеции.

$MN││BC; MN││AD.$

2. Средняя линия равна полусумме оснований.

$MN={BC+AD}/{2}$

3. Диагональ делит среднюю линию на две части, каждая из которых является средней линией получившихся треугольников.

$МК$ - средняя линия треугольника $ABD; MK={AD}/{2}$.

$KN$ - средняя линия треугольника $BCD; KN={BC}/{2}$.

Трапеция, у которой боковые стороны равны, называется равнобедренной.

Свойства равнобедренной трапеции:

1. Углы при основаниях равны.

$∠А=∠D; ∠B=∠C.$

2. Диагонали в равнобедренной трапеции равны.

$BD=AC.$

3. Основание высоты равнобедренной трапеции, опущенной из меньшего основания, делит другое основание на отрезки, больший из которых равен полусумме оснований.

$АС_1={BC+AD}/{2}.$

4. Основания высот равнобедренной трапеции, опущенных из меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований.

$BC=B_1C_1;$

$AB_1=C_1 D={AD-BC}/{2}.$

5. Если трапеция является равнобедренной, то около неё можно описать окружность.

6. Если в равнобедренной трапеции диагонали пересекаются под прямым углом, то высота рана длине средней линии данной трапеции.

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

$АВ+CD=BC+AD$

Около четырехугольника не всегда можно описать окружность. Если сумма противоположных углов четырехугольника равна $180°$, то только тогда около него можно описать окружность.

$∠В+∠D=180°$

$∠A+∠C=180°$

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ - коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Признаки подобия треугольников:

  1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Биссектриса – это линия, которая делит угол пополам.

Свойства биссектрисы:

1. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.

2. Если точка лежит на биссектрисе, то расстояния от неё до сторон угла равны.

$AD=DC$

3. В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.

${AB}/{AC}={BA_1}/{A_1C}$

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$AC^2+BC^2=AB^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ - противолежащий катет; $ВС$ - прилежащий катет.

Для острого угла $А: ВС$ - противолежащий катет; $АС$ - прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sinα}={b}/{sin⁡β}={c}/{sinγ}=2R$, где $R$ - радиус описанной около треугольника окружности.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα;$

$b^2=a^2+c^2-2·a·c·cos⁡β;$

$c^2=b^2+a^2-2·b·a·cosγ.$

Практика: решай 1 задание и тренировочные варианты ЕГЭ по математике (профиль)

Составим твой персональный план подготовки к ЕГЭ

Хочу!