Стереометрия
Теория к заданию 13 из ЕГЭ по математике (профиль)
Параллельность в пространстве
- Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.
- Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.
- Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.
- Если прямая a, не лежащая в плоскости , параллельна некоторой прямой , которая лежит в плоскости , то прямая a параллельна плоскости .
- Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.
Перпендикулярность в пространстве
- Две прямые называются перпендикулярными, если угол между ними равен .
- Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.
- Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны.
- Теорема о трех перпендикулярах: если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и самой наклонной.
- Если из одной точки проведены к плоскости перпендикуляр и наклонные, то:
- Перпендикуляр короче наклонных.
- Равные наклонные имеют равные проекции на плоскости.
- Большей наклонной соответствует большая проекция на плоскости.
Скрещивающиеся прямые
- Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются.
- Через две скрещивающиеся прямые проходит единственная пара параллельных плоскостей.
- Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
- Угол между скрещивающимися прямыми – это острый угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.
Многогранники
Введем общие обозначения
- периметр основания;
- площадь основания;
- площадь боковой поверхности;
- площадь полной поверхности;
- объем фигуры.
Название | Определение и свойства фигуры | Обозначения и формулы объема, площади |
Прямоугольный параллелепипед |
1. Все двугранные углы прямоугольного параллелепипеда – прямые. 2. Противоположные грани попарно равны и параллельны. 3. Диагонали прямоугольного параллелепипеда равны. 4. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты). |
, где и – длина, ширина и высота. . |
Куб |
1. Противоположные грани попарно параллельны. 2. Все двугранные углы куба – прямые. 3. Диагональ куба в раз больше его ребра. 4. Диагональ грани куба в раза больше длины ребра. |
Пусть - длина ребра куба, - диагональ куба, тогда справедливы формулы: . , где - радиус сферы, описанной около куба. , где - радиус сферы, вписанной в куб. |
Призма |
Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и -го количества параллелограммов.
|
|
Пирамида |
|
Формулы вычисления объема и площади поверхности правильной пирамиды. - высота боковой грани (апофема) |
Усеченная пирамида |
|
Где - площади оснований; - высота (расстояние между основаниями); Для правильной ус. пирамиды , где и – периметры оснований; – апофема. |
Цилиндр |
|
|
Конус |
|
|
Усеченный конус |
|
Где и – радиусы оснований; - высота усеченного конуса. |
Сфера, шар |
|
, где - радиус сферы, - диаметр сферы , где - радиус шара, - диаметр шара. |
Тетраэдр
Радиус описанной сферы тетраэдра.
Вокруг тетраэдра можно описать сферу, радиус которой находим по формуле, где - радиус описанной сферы, - ребро тетраэдра.
Радиус вписанной в тетраэдр сферы.
В тетраэдр можно вписать сферу, радиус вписанной сферы находим по формуле, приведенной ниже.
Где - радиус вписанной в тетраэдр сферы,
- ребро тетраэдра.
Составные многогранники
Задачи на нахождение объема составного многогранника:
- Разделить составной многогранник на несколько параллелепипедов.
- Найти объем каждого параллелепипеда.
- Сложить объемы.
Задачи на нахождение площади поверхности составного многогранника.
- Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:
Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.
- Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.
Пример:
Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).
Представим данный многогранник как прямую призму с высотой равной .
Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:
Далее подставим все данные в формулу и найдем площадь поверхности многогранника
Ответ:
- Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.
Задачи на нахождение расстояния между точками составного многогранника.
В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны.
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Задачи на нахождение угла или значения одной из тригонометрических функций обозначенного в условии угла составного многогранника.
Так как в данных задачах приведены составные многогранники, у которых все двугранные углы прямые, то достроим угол до прямоугольного треугольника и найдем его значение по тригонометрическим значениям.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике , с прямым углом :
Для острого угла - противолежащий катет; - прилежащий катет.
Для острого угла - противолежащий катет; - прилежащий катет.
- Синусом () острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом () острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом () острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.
Значения тригонометрических функций некоторых углов:
Связь между сторонами правильного n-угольника и радиусами описанной и вписанной окружностей
- сторона правильного многоугольника
- радиус описанной окружности
- радиус вписанной окружности
- количество сторон и углов
;
;
.
Формула нахождения градусной меры угла в правильном многоугольнике:
Формулы площадей треугольников и многоугольников, которые могут находиться в основании многогранников
В основании лежит треугольник
1. , где - высота, проведенная к стороне а
2. , где - соседние стороны, - угол между этими соседними сторонами.
3. , где - радиус вписанной окружности
4. , где - радиус описанной окружности
5. Для прямоугольного треугольника , где и - катеты прямоугольного треугольника.
В основании лежит четырехугольник
Прямоугольник
, где и - смежные стороны.
Ромб
, где и - диагонали ромба
, где - длина стороны ромба, а - угол между соседними сторонами.
Трапеция
, где и - основания трапеции, - высота трапеции.
Площади правильных многоугольников:
1. Для равностороннего треугольника , где - длина стороны.
2. Квадрат
, где - сторона квадрата.
3. Правильный шестиугольник
Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:
, где - сторона правильного шестиугольника.
Бесплатный интенсив по математике (профиль)
✅ Сможешь увеличить свой результат с нуля на 40 баллов, решишь 100+ прототипов
✅ Изучишь основные темы по профильной математике, узнаешь лайфхаки и разберёшься в структуре всего экзамена
✅ Наработаешь твердую базу и заполнишь пробелы предыдущих лет
У тебя будет:
- 1 онлайн-вебинар по 1 часу в неделю.
- Домашка после каждого веба без дедлайна (делай, когда тебе удобно).
- Скрипты, конспекты, множество полезных материалов.
- Удобный личный кабинет: расписание вебов, домашки, твой прогресс и многое другое.
- Отдельная беседа в ТГ с сокурсниками и преподавателями.