Задание 17 из ЕГЭ по математике (профиль). Страница 3

За это задание вы можете получить 3 балла на ЕГЭ в 2025 году
Разбор сложных заданий в тг-канале:
Задача 41

В остроугольном треугольнике $ABC$ проведены высота $BB_1$ и медиана $AA_1$, причём точки $A$, $B$, $B_1$ и $A_1$ лежат на одной окружности. а) Докажите, что треугольник $ABC$ равнобедренный. б) Н…

Задача 42

$AL$ — биссектриса равнобедренного треугольника $ABC$ с основанием $AC$. На продолжении стороны $AC$ за вершину $C$ взята точка $K$ так, что $AL=LK$. a) Докажите, что треугольник $CKL$ равнобедрен…

Задача 43

Две окружности касаются внешним образом в точке $K$, через которую проведена их общая касательная, на которой отмечена точка $M$. Через точку $M$ проведены две прямые: одна пересекает пе…

Задача 44

Две окружности касаются внешним образом в точке $K$, через которую проведена их общая касательная, на которой отмечена точка $M$. Через точку $M$ проведены две прямые: одна пересекает пе…

Задача 45

В трапеции $ABCD$ основания $BC$ и $AD$ равны $2$ и $12$ соответственно. Из точки $K$, лежащей на стороне $CD$, опущен перпендикуляр $KL$ на сторону $AB$. Известно, что $L$ — середина стороны $AB$, $CL=5$ …

Задача 46

В треугольнике $ABC$ $AB=8$, $∠ ACB=\arcsin{8} / {11}$. Хорда $DG$ окружности, описанной около треугольника $ABC$, пересекает стороны $AC$ и $BC$ треугольника в точках $F$ и $E$ соответственно. Изве…

Задача 47

В прямоугольном треугольнике $ABC$ точка $N$ лежит на катете $BC$, а точка $M$ — на продолжении катета $AC$ за точку $C$, причём $AC=CN$ и $BC=CM$. Отрезки $CH$ и $CK$ — высоты треугольников $ABC$ и $CMN$ …

Задача 48

Задан треугольник $△ABC$, каждая сторона которого равна $5$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$.

а) Докажите, что $AD + CD = BD$.

б) Прямая $l$ касается описанной …

Задача 49

Задан треугольник $ABC$, каждая сторона которого равна $2$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$. Прямая $l$ проходит через точку $A$ и перпендикулярна отрезку, пров…

Задача 50

Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из точки $O_1$ проведена касательная $O_1T$ ко второй окружности ($T$ - точка касания), а из точки $O_2$ провед…

Задача 51

Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из точки $O_1$ проведена касательная $O_1K$ ко второй окружности ($K$ - точка касания), а из точки $O_2$ провед…

Задача 52

Две окружности касаются внешним образом в точке $T$. Прямая $KN$ касается первой окружности в точке $K$, а второй - в точке $N$. Известно, что $TS$ - диаметр окружности, описанной около $△KNT$.…

Задача 53

Две окружности касаются внешним образом в точке $P$. Прямая $MN$ касается первой окружности в точке $M$, а второй - в точке $N$.

а) Докажите, что $△MNP$ прямоугольный.

б) Найдите площадь $△MNP$,…

Задача 54

В прямоугольнике ABCD AB = 16, AD = 22. К окружности, радиус которой равен 8, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точке M.

а) Дока…

Задача 55

В прямоугольнике ABCD AB = 24, AD = 23. К окружности, радиус которой равен 12, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точкеM.

а) Дока…

Задача 56

Биссектриса острого угла параллелограмма пересекает его сторону в точке K. Окружность радиусом 3 проходит через точку пересечения диагоналей и касается трёх сторон параллелограмма,…

Задача 57

Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиусом 2, касающиеся её сторон и друг…

Задача 58

К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.

а) Докажи…

Задача 59

К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.

а) Докажи…

Задача 60

К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.

а) Докажите, что периметр треугольника AMN равен стороне …

1 2 3 4 5