Задание 17 из ЕГЭ по математике (профиль): задача 58
К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.
а) Докажите, что периметр четырёхугольника KNML равен 2MN + BK, где K и L - точки касания вписанной окружности со сторонами BC и AC соответственно.
б) Найдите CM : MA, если известно, что MT : TN = 6 : 1.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …
Иван и Трофим открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $10%$, а в конце четвёртого года…
Квадрат $ABCD$ вписан в окружность. Хорда $CF$ пересекает его диагональ $BD$ в точке $L$. а) Докажите, что $CL⋅ CF=AB^2$. б) Найдите отношение $CL$ и $LF$, если $∠ DCF=30°$.