Задание 17 из ЕГЭ по математике (профиль): задача 58
К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.
а) Докажите, что периметр четырёхугольника KNML равен 2MN + BK, где K и L - точки касания вписанной окружности со сторонами BC и AC соответственно.
б) Найдите CM : MA, если известно, что MT : TN = 6 : 1.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В окружность радиусом $√ 7$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ BAD=60^°$. Хорда $CE$ пересекает диаметр $AD$ в точке $P$ так, что $AP:PD=1:3$. а) Докажите, …
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …
Дана равнобедренная трапеция $ABCD$ с основаниями $AD$ и $BC$. Окружность с центром $O$, построенная на боковой стороне $AB$ как на диаметре, касается боковой стороны $CD$ и второй раз пересек…