Задание 17 из ЕГЭ по математике (профиль): задача 73
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.
а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, вписанной в треугольник $ABC$.
б) Найдите расстояние между центрами этих окружностей, если $AB = 10, AC = 12, sinA = {√7}/{4}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …
В остроугольном треугольнике $ABC$ проведены высота $BB_1$ и медиана $AA_1$, причём точки $A$, $B$, $B_1$ и $A_1$ лежат на одной окружности. а) Докажите, что треугольник $ABC$ равнобедренный. б) Н…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…