Задание 17 из ЕГЭ по математике (профиль): задача 73

Разбор сложных заданий в тг-канале:

Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.

а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, вписанной в треугольник $ABC$.

б) Найдите расстояние между центрами этих окружностей, если $AB = 10, AC = 12, sinA = {√7}/{4}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

В июле $2022$ года планируется взять кредит в банке на сумму $600 000$ рублей. Условия его возврата таковы: — каждый январь долг увеличивается на $r %$ по сравнению с концом предыдущего …

В прямоугольном треугольнике $ABC$ проведена высота $CH$ к гипотенузе $AB$. На катетах $AC$ и $BC$ отмечены точки $R$ и $V$ так, что треугольник $RHV$ прямоугольный. а) Докажите, что треугольник $RVH$ …

Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …