Задание 17 из ЕГЭ по математике (профиль): задача 73

Разбор сложных заданий в тг-канале:

Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.

а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, вписанной в треугольник $ABC$.

б) Найдите расстояние между центрами этих окружностей, если $AB = 10, AC = 12, sinA = {√7}/{4}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

В прямоугольнике ABCD AB = 16, AD = 22. К окружности, радиус которой равен 8, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точке M.

а) Дока…

В треугольнике $MNP$ проведены медианы $MM_1$ и $NN_1$. На сторонах $MN, MP$ и $NP$ взяты соответственно точки $F, K$ и $E$, причём $FE ‖ MM_1, FK ‖ NN_1$ и $MF : MN = 1 : 3$.

а) Докажите, что $MK = {1}/{6}MP, NE = {1}/{3}PN$.…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!