Задание 17 из ЕГЭ по математике (профиль): задача 72

Разбор сложных заданий в тг-канале:

Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $AB$ и $AC$ в точках $M$ и $N$.

а) Докажите что центр окружности, вписанной в треугольник $AMN$, лежит на окружности, вписанной в треугольник $ABC$.

б) Найдите расстояние между центрами этих окружностей, если $AB = CN = 10, BM = 6, sinA = {4√3}/{7}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Задан треугольник $△ABC$, каждая сторона которого равна $5$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$.

а) Докажите, что $AD + CD = BD$.

б) Прямая $l$ касается описанной …

Точка $B$ лежит на отрезке $AC$. Прямая, проходящая через точку $A$, касается окружности с диаметром $BC$ в точке $F$ и второй раз пересекает окружность с диаметром $AB$ в точке $K$. Продолжение…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!