Задание 17 из ЕГЭ по математике (профиль): задача 64

Разбор сложных заданий в тг-канале:

В окружность вписана трапеция ABCD с основаниями AD и BC (AD > BC), один из углов которой равен $60°$. В трапецию вписана ещё одна окружность.

а) Докажите, что угол ABD - острый.

б) Найдите, во сколько раз радиус вписанной окружности трапеции ABCD больше радиуса большей из окружностей, касающихся внутренним образом этой вписанной окружности и диагонали BD.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Внутри квадрата $ABCD$ проведены дуги с центрами в его вершинах и радиусом ${1} / {4}AB$. На дугах окружностей с центрами в точках $A$, $B$, $C$, $D$ взяли точки $K$, $L$, $M$, $N$ соответственно так,…

Квадрат $ABCD$ вписан в окружность. Хорда $CF$ пересекает его диагональ $BD$ в точке $L$. а) Докажите, что $CL⋅ CF=AB^2$. б) Найдите отношение $CL$ и $LF$, если $∠ DCF=30°$.