Задание 17 из ЕГЭ по математике (профиль): задача 64

Разбор сложных заданий в тг-канале:

В окружность вписана трапеция ABCD с основаниями AD и BC (AD > BC), один из углов которой равен $60°$. В трапецию вписана ещё одна окружность.

а) Докажите, что угол ABD - острый.

б) Найдите, во сколько раз радиус вписанной окружности трапеции ABCD больше радиуса большей из окружностей, касающихся внутренним образом этой вписанной окружности и диагонали BD.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В трапеции $ABCD$ основания $BC$ и $AD$ равны $3$ и $9$ соответственно. Из точки $K$, лежащей на стороне $CD$, опущен перпендикуляр $KL$ на сторону $AB$. Известно, что $L$ — середина стороны $AB$, $CL=4$ …

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC в точках E и F.

а) Докажите, что центр окружности, вписанной в треугольник AEF, лежит на окружности, …