Задание 17 из ЕГЭ по математике (профиль): задача 57
Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиусом 2, касающиеся её сторон и друг друга, причём K - одна из точек касания.
а) Докажите, что треугольник ABK равнобедренный.
б) Найдите площадь трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Две окружности касаются внешним образом в точке $P$. Прямая $MN$ касается первой окружности в точке $M$, а второй - в точке $N$.
а) Докажите, что $△MNP$ прямоугольный.
б) Найдите площадь $△MNP$,…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
Трапеция $ABCD$ с б\'ольшим основанием $AD$ вписана в окружность. $BH$ — высота трапеции. Прямая $BH$ вторично пересекает окружность в точке $T$. а) Докажите, что прямая $AT$ и диагональ трапе…