Задание 17 из ЕГЭ по математике (профиль): задача 57
Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиусом 2, касающиеся её сторон и друг друга, причём K - одна из точек касания.
а) Докажите, что треугольник ABK равнобедренный.
б) Найдите площадь трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность, вписанная в остроугольный треугольник , касается сторон и в точках и .
а) Докажите, что центр окружности, вписанной в треугольник , лежит на окружности, …
В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отре…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на лет под годовых, второй — на лет под годовых, причём в обо…