Задание 17 из ЕГЭ по математике (профиль): задача 77
В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отрезков CM и DN.
а) Докажите, что N - середина стороны AB.
б) Найдите, какую часть от площади трапеции ABCD составляет площадь четырёхугольника ANLM, если BC = 5, AD = 8.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из точки $O_1$ проведена касательная $O_1T$ ко второй окружности ($T$ - точка касания), а из точки $O_2$ провед…
В конце 2019 года «Рядом-Банк» предоставил кредит на сумму $20$ млн 630 тысяч рублей на следующих условиях: — в начале каждого квартала 2020 года долг возрастал на $12%$; — в начале ка…
В окружность радиусом $8$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ ABC=120^°$. Хорда $CM$ пересекает диаметр $AD$ в точке $P$ так, что длина отрезка $AP=4$. а) До…