Задание 17 из ЕГЭ по математике (профиль): задача 77

Разбор сложных заданий в тг-канале:

В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отрезков CM и DN.

а) Докажите, что N - середина стороны AB.

б) Найдите, какую часть от площади трапеции ABCD составляет площадь четырёхугольника ANLM, если BC = 5, AD = 8.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В конце 2019 года «Рядом-Банк» предоставил кредит на сумму $20$ млн 630 тысяч рублей на следующих условиях: — в начале каждого квартала 2020 года долг возрастал на $12%$; — в начале ка…

В окружность вписана трапеция ABCD с основаниями AD и BC (AD > BC), один из углов которой равен $60°$. В трапецию вписана ещё одна окружность.

а) Докажите, что угол ABD - острый.

б) …

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Дан выпуклый четырёхугольник $KLMN$. а) Докажите, что отрезки $AC$ и $BD$, соединяющие середины его противоположных сторон, делят друг друга пополам. б) Найдите площадь четырёхугольника …