Задание 17 из ЕГЭ по математике (профиль): задача 78
В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отрезков CM и DN.
а) Докажите, что N - середина стороны AB.
б) Найдите, какую часть от площади трапеции ABCD составляет площадь четырёхугольника ANLM, если BC = 4, AD = 6.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике $ABC$ с прямым углом $C$ $MN$ - средняя линия, параллельная стороне $AC$. Биссектриса угла $A$ пересекает луч $MN$ в точке $K$.
а) Докажите, что $△BKC~△AMK$.
б) Найдите отношение $S_{BKC} : S_{AMK}$,…
В конце 2019 года «Рядом-Банк» предоставил кредит на сумму $20$ млн 630 тысяч рублей на следующих условиях: — в начале каждого квартала 2020 года долг возрастал на $12%$; — в начале ка…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…