Задание 17 из ЕГЭ по математике (профиль): задача 78

Разбор сложных заданий в тг-канале:

В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отрезков CM и DN.

а) Докажите, что N - середина стороны AB.

б) Найдите, какую часть от площади трапеции ABCD составляет площадь четырёхугольника ANLM, если BC = 4, AD = 6.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Две окружности касаются внешним образом в точке $T$. Прямая $KN$ касается первой окружности в точке $K$, а второй - в точке $N$. Известно, что $TS$ - диаметр окружности, описанной около $△KNT$.…

В конце 2019 года «Рядом-Банк» предоставил кредит на сумму $20$ млн 630 тысяч рублей на следующих условиях: — в начале каждого квартала 2020 года долг возрастал на $12%$; — в начале ка…

Две окружности касаются внешним образом в точке $K$, через которую проведена их общая касательная, на которой отмечена точка $M$. Через точку $M$ проведены две прямые: одна пересекает пе…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!