Задание 17 из ЕГЭ по математике (профиль): задача 48
Задан треугольник $△ABC$, каждая сторона которого равна $5$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$.
а) Докажите, что $AD + CD = BD$.
б) Прямая $l$ касается описанной окружности треугольника $ABC$ в точке $A$. $K$ - точка пересечения прямых $l$ и $BD$. Длина отрезка $AK$ равна $2$. Найдите $AD·DC$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
В треугольнике $ABC$ проведены высоты $AM$ и $BN$. На них из точек $M$ и $N$ опущены перпендикуляры $MK$ и $NF$ соответственно.
а) Докажите, что прямые $KF$ и $AB$ параллельны.
б) Найдите отношени…
Точка $B$ лежит на отрезке $AC$. Прямая, проходящая через точку $A$, касается окружности с диаметром $BC$ в точке $F$ и второй раз пересекает окружность с диаметром $AB$ в точке $M$. Продолжение…