Задание 17 из ЕГЭ по математике (профиль): задача 12
В трапеции $ABCD$ основания $BC$ и $AD$ равны $3$ и $9$ соответственно. Из точки $K$, лежащей на стороне $CD$, опущен перпендикуляр $KL$ на сторону $AB$. Известно, что $L$ — середина стороны $AB$, $CL=4$ и что площадь четырёхугольника $ALKD$ в $3$ раза больше площади четырёхугольника $BCKL$. a) Докажите, что $BK∥ DL$. б) Найдите длину отрезка $DL$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольном треугольнике $ABC$ точка $D$ лежит на катете $AC$, а точка $F$ — на продолжении катета $BC$ за точку $C$, причём $CD=BC$ и $CF=AC$. Отрезки $CM$ и $CN$ — высоты треугольников $ABC$ и $FCD$ …
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…