Задание 17 из ЕГЭ по математике (профиль): задача 11

Разбор сложных заданий в тг-канале:

$AL$ — биссектриса равнобедренного треугольника $ABC$ с основанием $AC$. На продолжении стороны $AC$ за вершину $C$ взята точка $K$ так, что $AL=LK$. a) Докажите, что треугольник $CKL$ равнобедренный. б) В каком отношении прямая $KL$ делит сторону $AB$ треугольника $ABC$, если $\cos∠ BAC={1} / {4}$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В трапеции $ABCD$ основания $BC$ и $AD$ равны $2$ и $12$ соответственно. Из точки $K$, лежащей на стороне $CD$, опущен перпендикуляр $KL$ на сторону $AB$. Известно, что $L$ — середина стороны $AB$, $CL=5$ …

Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

ABCD - прямоугольник. Окружность с центром в точке A радиуса AD пересекает продолжение стороны DA в точке K. Прямая KB пересекает прямую CD в точке P, а окружность во второй раз - …