Задание 17 из ЕГЭ по математике (профиль): задача 4

Разбор сложных заданий в тг-канале:

Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года — на $18%$ по сравнению с его размером в начале года. Кроме этого, в начале третьего и четвёртого годов Мария ежегодно пополняла вклад на $x$ тысяч рублей, где $x$ — натуральное число. Анна пополнила свой вклад только в начале третьего года, но на сумму $2x$ тысяч рублей. Найдите наименьшее значение $x$, при котором через четыре года на счёте у Анны стало на целое число тысяч рублей больше, чем у Марии.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.

а) Докажи…

Две окружности касаются внешним образом в точке $P$. Прямая $MN$ касается первой окружности в точке $M$, а второй - в точке $N$.

а) Докажите, что $△MNP$ прямоугольный.

б) Найдите площадь $△MNP$,…

Вне квадрата $ABCD$ с центром $O$ взята точка $K$, причём
$∠ BKC=90^°$. а) Докажите, что $∠ BOK=∠ BCK$. б) Прямая $KO$ пересекает сторону $AD$ квадрата в точке $L$. Найдите $KL$, если известно, что…

В окружность радиусом $√ 7$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ BAD=60^°$. Хорда $CE$ пересекает диаметр $AD$ в точке $P$ так, что $AP:PD=1:3$. а) Докажите, …