Задание 17 из ЕГЭ по математике (профиль): задача 4
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года — на $18%$ по сравнению с его размером в начале года. Кроме этого, в начале третьего и четвёртого годов Мария ежегодно пополняла вклад на $x$ тысяч рублей, где $x$ — натуральное число. Анна пополнила свой вклад только в начале третьего года, но на сумму $2x$ тысяч рублей. Найдите наименьшее значение $x$, при котором через четыре года на счёте у Анны стало на целое число тысяч рублей больше, чем у Марии.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В остроугольном треугольнике $ABC$ проведены высота $BB_1$ и медиана $AA_1$, причём точки $A$, $B$, $B_1$ и $A_1$ лежат на одной окружности. а) Докажите, что треугольник $ABC$ равнобедренный. б) Н…
Две окружности касаются внешним образом в точке $P$. Прямая $MN$ касается первой окружности в точке $M$, а второй - в точке $N$.
а) Докажите, что $△MNP$ прямоугольный.
б) Найдите площадь $△MNP$,…
В окружность радиусом $√ 7$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ BAD=60^°$. Хорда $CE$ пересекает диаметр $AD$ в точке $P$ так, что $AP:PD=1:3$. а) Докажите, …