Задание 17 из ЕГЭ по математике (профиль): задача 1

Разбор сложных заданий в тг-канале:

В окружность радиусом $√ 7$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ BAD=60^°$. Хорда $CE$ пересекает диаметр $AD$ в точке $P$ так, что $AP:PD=1:3$. а) Докажите, что $∠ BEC=30°$. б) Найдите площадь треугольника $BPE$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дмитрий Олегович хочет положить определённую сумму денег в банки под некоторые проценты. ${1} / {4}$ этой суммы он кладёт на вклад «A» под $r%$ годовых, а оставшуюся часть денег — на в…

Точка $M$ - центр окружности, описанной около остроугольного треугольника $NPK$, $Q$ - центр вписанной в него окружности, $W$ - точка пересечения высот. Известно, что $∠PNK = ∠MPK + ∠MKP$.

а…

В прямоугольнике ABCD AB = 16, AD = 22. К окружности, радиус которой равен 8, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точке M.

а) Дока…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…