Задание 17 из ЕГЭ по математике (профиль): задача 85

Разбор сложных заданий в тг-канале:

В треугольнике $ABC$ с прямым углом $C$ $MN$ - средняя линия, параллельная стороне $AC$. Биссектриса угла $A$ пересекает луч $MN$ в точке $K$.

а) Докажите, что $△BKC~△AMK$.

б) Найдите отношение $S_{BKC} : S_{AMK}$, если $cos∠BAC = 0.6$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

В остроугольном треугольнике $ABC$ проведены высота $BB_1$ и медиана $AA_1$, причём точки $A$, $B$, $B_1$ и $A_1$ лежат на одной окружности. а) Докажите, что треугольник $ABC$ равнобедренный. б) Н…

В треугольнике $ABC$ проведены медианы $BB_1$ и $CC_1$. На сторонах $BC, AC$ и $AB$ взяты соответственно точки $M, N$ и $P$, причём $MN ‖ BB_1, MP ‖ CC_1$ и $BM : BC = 1 : 5$.

а) Докажите, что $BP = {1}/{10}AB, CN = {2}/{5}AC$.…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!