Задание 17 из ЕГЭ по математике (профиль): задача 83
Точка $M$ - центр окружности, описанной около остроугольного треугольника $NPK$, $Q$ - центр вписанной в него окружности, $W$ - точка пересечения высот. Известно, что $∠PNK = ∠MPK + ∠MKP$.
а) Докажите, что точка $Q$ лежит на окружности, описанной около треугольника $PMK$.
б) Найдите угол $MQW$, если $∠NPK = 47°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
Окружность касается сторон AB и BC треугольника ABC соответственно в точках D и E. Точки A, D, E и C лежат на одной окружности.
а) Докажите, что треугольник равнобедренный.
б) Найд…
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $E$ и $F$.
а) Докажите что центр окружности, вписанной в треугольник $BEF$, лежит на окружности, в…