Задание 17 из ЕГЭ по математике (профиль): задача 83
Точка $M$ - центр окружности, описанной около остроугольного треугольника $NPK$, $Q$ - центр вписанной в него окружности, $W$ - точка пересечения высот. Известно, что $∠PNK = ∠MPK + ∠MKP$.
а) Докажите, что точка $Q$ лежит на окружности, описанной около треугольника $PMK$.
б) Найдите угол $MQW$, если $∠NPK = 47°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В окружность радиусом $√ 7$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ BAD=60^°$. Хорда $CE$ пересекает диаметр $AD$ в точке $P$ так, что $AP:PD=1:3$. а) Докажите, …
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
В параллелограмме $ABCD$ угол $B$ тупой. На продолжении стороны $AD$ за точку $D$ взята такая точка $E$, что $CD=CE$, а на продолжении стороны $CD$ за точку $D$ взята такая точка $F$, что $AD=AF$. а) …