Задание 17 из ЕГЭ по математике (профиль): задача 82
Точка $P$ - центр окружности, описанной около остроугольного треугольника $MNQ, K$ - центр вписанной в него окружности, $O$ - точка пересечения высот. Известно, что $∠NMQ = ∠PNQ + ∠PQN$.
а) Докажите, что точка $K$ лежит на окружности, описанной около треугольника $NPQ$.
б) Найдите угол $PKO$, если $∠MNQ = 42°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции $ABCD$, в которой $AD ‖ BC$, точка $M$ точка пересечения боковых сторон $AB$ и $CD$. Прямая $MN$ пересекает основания $AD$ и $BC$ в точках $P$ и $Q$ соответственно, точка $N$ точка пересечени…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC в точках E и F.
а) Докажите, что центр окружности, вписанной в треугольник AEF, лежит на окружности, …