Задание 17 из ЕГЭ по математике (профиль): задача 82

Разбор сложных заданий в тг-канале:

Точка $P$ - центр окружности, описанной около остроугольного треугольника $MNQ, K$ - центр вписанной в него окружности, $O$ - точка пересечения высот. Известно, что $∠NMQ = ∠PNQ + ∠PQN$.

а) Докажите, что точка $K$ лежит на окружности, описанной около треугольника $NPQ$.

б) Найдите угол $PKO$, если $∠MNQ = 42°$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Окружность касается продолжений сторон AB и BC треугольника ABC соответственно в точках D и E. Точки A, D, E и C лежат на одной окружности, причём точка A лежит между точками B и D…

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.

а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, …

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!