Задание 17 из ЕГЭ по математике (профиль): задача 2
В окружности с центром $O$ проведён диаметр $MN$, отмечены точка $K$ — середина дуги $MN$, точка $A$ — середина хорды $MK$ и точка $B$ — середина дуги $KN$.
а) Докажите, что $AB:MN=√ 3:√ 8$.
б) На отрезке $AB$, как на стороне, построен прямоугольник $ABCD$ так, что его вершина $C$ лежит на окружности. Найдите площадь прямоугольника $ABCD$, если радиус окружности равен $3√ 7$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Точка $B$ лежит на отрезке $AC$. Прямая, проходящая через точку $A$, касается окружности с диаметром $BC$ в точке $F$ и второй раз пересекает окружность с диаметром $AB$ в точке $M$. Продолжение…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
$AL$ — биссектриса равнобедренного треугольника $ABC$ с основанием $AC$. На продолжении стороны $AC$ за вершину $C$ взята точка $K$ так, что $AL=LK$. a) Докажите, что треугольник $CKL$ равнобедрен…