Задание 17 из ЕГЭ по математике (профиль): задача 2

Разбор сложных заданий в тг-канале:

В окружности с центром $O$ проведён диаметр $MN$, отмечены точка $K$ — середина дуги $MN$, точка $A$ — середина хорды $MK$ и точка $B$ — середина дуги $KN$.

а) Докажите, что $AB:MN=√ 3:√ 8$.

б) На отрезке $AB$, как на стороне, построен прямоугольник $ABCD$ так, что его вершина $C$ лежит на окружности. Найдите площадь прямоугольника $ABCD$, если радиус окружности равен $3√ 7$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

ABCD - прямоугольник. Окружность с центром в точке B радиусом AB пересекает продолжение стороны AB в точке E. Прямая EC пересекает прямую AD в точке K, а окружность во второй раз -…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!