Задание 17 из ЕГЭ по математике (профиль): задача 31
Трапеция $ABCD$ с б\'ольшим основанием $AD$ вписана в окружность. $BH$ — высота трапеции. Прямая $BH$ вторично пересекает окружность в точке $T$. а) Докажите, что прямые $AC$ и $AT$ перпендикулярны. б) Прямые $AD$ и $CT$ пересекаются в точке $P$. Найдите $AD$, если радиус описанной около трапеции $ABCD$ окружности равен $20$, $∠ BAC=30°$, а площадь треугольника $PTH$ в $24$ раза меньше площади четырёхугольника $BCPH$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Иван и Трофим открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $10%$, а в конце четвёртого года…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
В треугольнике $ABC$ проведены высоты $AM$ и $BN$. На них из точек $M$ и $N$ опущены перпендикуляры $MK$ и $NF$ соответственно.
а) Докажите, что прямые $KF$ и $AB$ параллельны.
б) Найдите отношени…