Задание 17 из ЕГЭ по математике (профиль): задача 31

Разбор сложных заданий в тг-канале:

Трапеция $ABCD$ с б\'ольшим основанием $AD$ вписана в окружность. $BH$ — высота трапеции. Прямая $BH$ вторично пересекает окружность в точке $T$. а) Докажите, что прямые $AC$ и $AT$ перпендикулярны. б) Прямые $AD$ и $CT$ пересекаются в точке $P$. Найдите $AD$, если радиус описанной около трапеции $ABCD$ окружности равен $20$, $∠ BAC=30°$, а площадь треугольника $PTH$ в $24$ раза меньше площади четырёхугольника $BCPH$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

В окружность радиусом $√ 7$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ BAD=60^°$. Хорда $CE$ пересекает диаметр $AD$ в точке $P$ так, что $AP:PD=1:3$. а) Докажите, …

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

В трапеции $ABCD$, в которой $AD ‖BC$, точка $O$ - точка пересечения диагоналей трапеции. Через эту точку проведена прямая, параллельная основаниям и пересекающая боковые стороны в точка…