Задание 17 из ЕГЭ по математике (профиль): задача 37
Дан выпуклый четырёхугольник $KLMN$. а) Докажите, что отрезки $AC$ и $BD$, соединяющие середины его противоположных сторон, делят друг друга пополам. б) Найдите площадь четырёхугольника $KLMN$, если $AD=3√ 2$, $BD=6√ 2$, $∠ ADB=60°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В окружности с центром $O$ проведён диаметр $MN$, отмечены точка $K$ — середина дуги $MN$, точка $A$ — середина хорды $MK$ и точка $B$ — середина дуги $KN$.
а) Докажите, что $AB:MN=√ 3:√ 8$.
б) На…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
Окружность касается продолжений сторон AB и BC треугольника ABC соответственно в точках D и E. Точки A, D, E и C лежат на одной окружности, причём точка A лежит между точками B и D…