Задание 17 из ЕГЭ по математике (профиль): задача 36
Дана равнобедренная трапеция $ABCD$ с основаниями $AD$ и $BC$. Окружность с центром $O$, построенная на боковой стороне $AB$ как на диаметре, касается боковой стороны $CD$ и второй раз пересекает большее основание $AD$ в точке $L$, точка $M$ — середина $CD$. а) Докажите, что четырёхугольник $DLOM$ — параллелограмм. б) Найдите $AD$, если $∠ BAD=75°$ и $BC=2$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Задан треугольник $ABC$, каждая сторона которого равна $2$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$. Прямая $l$ проходит через точку $A$ и перпендикулярна отрезку, пров…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
Точка $M$ - центр окружности, описанной около остроугольного треугольника $NPK$, $Q$ - центр вписанной в него окружности, $W$ - точка пересечения высот. Известно, что $∠PNK = ∠MPK + ∠MKP$.
а…