Задание 17 из ЕГЭ по математике (профиль): задача 36
Дана равнобедренная трапеция $ABCD$ с основаниями $AD$ и $BC$. Окружность с центром $O$, построенная на боковой стороне $AB$ как на диаметре, касается боковой стороны $CD$ и второй раз пересекает большее основание $AD$ в точке $L$, точка $M$ — середина $CD$. а) Докажите, что четырёхугольник $DLOM$ — параллелограмм. б) Найдите $AD$, если $∠ BAD=75°$ и $BC=2$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Точки $A$, $B$, $C$, $D$ и $E$ лежат на окружности в указанном порядке, причём $AB=AE=ED$, а прямые $AC$ и $BD$ перпендикулярны. Отрезки $BD$ и $CE$ пересекаются в точке $K$. а) Докажите, что прямая $AD$ …
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
В треугольнике $ABC$ проведены высоты $AM$ и $BN$. На них из точек $M$ и $N$ опущены перпендикуляры $MK$ и $NF$ соответственно.
а) Докажите, что прямые $KF$ и $AB$ параллельны.
б) Найдите отношени…