Задание 17 из ЕГЭ по математике (профиль): задача 80
В трапеции $ABCD$, в которой $AD ‖BC$, точка $O$ - точка пересечения диагоналей трапеции. Через эту точку проведена прямая, параллельная основаниям и пересекающая боковые стороны в точках $M$ и $N$.
а) Докажите, что $MO = ON$.
б) Найдите отношение ${BC}/{AD}$, если ${BD}/{OB}= {5}/{2}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $AB$ и $AC$ в точках $M$ и $N$.
а) Докажите что центр окружности, вписанной в треугольник $AMN$, лежит на окружности, в…
Внутри квадрата $ABCD$ проведены дуги окружностей с центрами в его вершинах и радиусом ${1} / {3}AB$. На этих дугах с центрами в точках $A$, $B$, $C$ и $D$ взяли точки $K$, $L$, $M$ и $N$ соответствен…