Задание 17 из ЕГЭ по математике (профиль): задача 80
В трапеции $ABCD$, в которой $AD ‖BC$, точка $O$ - точка пересечения диагоналей трапеции. Через эту точку проведена прямая, параллельная основаниям и пересекающая боковые стороны в точках $M$ и $N$.
а) Докажите, что $MO = ON$.
б) Найдите отношение ${BC}/{AD}$, если ${BD}/{OB}= {5}/{2}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольнике ABCD AB = 24, AD = 23. К окружности, радиус которой равен 12, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точкеM.
а) Дока…
Трапеция $ABCD$ с б\'ольшим основанием $AD$ вписана в окружность. $BH$ — высота трапеции. Прямая $BH$ вторично пересекает окружность в точке $T$. а) Докажите, что прямые $AC$ и $AT$ перпендикуля…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…