Задание 17 из ЕГЭ по математике (профиль): задача 80
В трапеции $ABCD$, в которой $AD ‖BC$, точка $O$ - точка пересечения диагоналей трапеции. Через эту точку проведена прямая, параллельная основаниям и пересекающая боковые стороны в точках $M$ и $N$.
а) Докажите, что $MO = ON$.
б) Найдите отношение ${BC}/{AD}$, если ${BD}/{OB}= {5}/{2}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CH$. На сторонах $AC$ и $BC$ отмечены точки $D$ и $E$ так, что угол $DHE$ прямой. а) Докажите, что треугольники $DEH$ и $ABC$ по…
В равнобедренной трапеции $ABCD$ меньшее основание $BC$ равно боковой стороне. На плоскости взята точка $E$ так, что прямая $BE$ перпендикулярна $AD$ и прямая $CE$ перпендикулярна $BD$. а) Докаж…