Задание 17 из ЕГЭ по математике (профиль): задача 38
Дан выпуклый четырёхугольник $KLMN$. а) Докажите, что отрезки $AC$ и $BD$, соединяющие середины его противоположных сторон, делят друг друга пополам. б) Найдите площадь четырёхугольника $KLMN$, если $AD=2√ 2$, $BD=4√ 2$, $∠ ADB=60°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из точки $O_1$ проведена касательная $O_1K$ ко второй окружности ($K$ - точка касания), а из точки $O_2$ провед…
Задан треугольник $ABC$, каждая сторона которого равна $2$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$. Прямая $l$ проходит через точку $A$ и перпендикулярна отрезку, пров…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…