Задание 17 из ЕГЭ по математике (профиль): задача 39

Разбор сложных заданий в тг-канале:

Квадрат $ABCD$ вписан в окружность. Хорда $CF$ пересекает его диагональ $BD$ в точке $L$. а) Докажите, что $CL⋅ CF=AB^2$. б) Найдите отношение $CL$ и $LF$, если $∠ DCF=30°$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Задан треугольник $ABC$, каждая сторона которого равна $2$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$. Прямая $l$ проходит через точку $A$ и перпендикулярна отрезку, пров…

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

В окружности с центром $O$ проведён диаметр $MN$, отмечены точка $K$ — середина дуги $MN$, точка $E$ — середина хорды $MK$ и точка $B$ — середина дуги $KN$, проведена хорда $AB$, которая проходит че…