Задание 17 из ЕГЭ по математике (профиль): задача 76
Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из касательных касается окружностей в точках A и C, считая от точки O, а другая - соответственно в точках B и D.
а) Докажите, что прямая AB перпендикулярна биссектрисе угла, образованного указанными касательными.
б) Найдите расстояние от середины отрезка AB до точки C, если радиусы окружностей равны 2 и 6.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
Квадрат $ABCD$ вписан в окружность. Хорда $CF$ пересекает его диагональ $BD$ в точке $L$. а) Докажите, что $CL⋅ CF=AB^2$. б) Найдите отношение $CL$ и $LF$, если $∠ DCF=30°$.