Задание 17 из ЕГЭ по математике (профиль): задача 76

Разбор сложных заданий в тг-канале:

Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из касательных касается окружностей в точках A и C, считая от точки O, а другая - соответственно в точках B и D.

а) Докажите, что прямая AB перпендикулярна биссектрисе угла, образованного указанными касательными.

б) Найдите расстояние от середины отрезка AB до точки C, если радиусы окружностей равны 2 и 6.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В трапеции $ABCD$ основания $BC$ и $AD$ равны $2$ и $12$ соответственно. Из точки $K$, лежащей на стороне $CD$, опущен перпендикуляр $KL$ на сторону $AB$. Известно, что $L$ — середина стороны $AB$, $CL=5$ …

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

Окружность касается продолжений сторон AB и BC треугольника ABC соответственно в точках D и E. Точки A, D, E и C лежат на одной окружности, причём точка A лежит между точками B и D…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…