Задание 17 из ЕГЭ по математике (профиль): задача 76

Разбор сложных заданий в тг-канале:

Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из касательных касается окружностей в точках A и C, считая от точки O, а другая - соответственно в точках B и D.

а) Докажите, что прямая AB перпендикулярна биссектрисе угла, образованного указанными касательными.

б) Найдите расстояние от середины отрезка AB до точки C, если радиусы окружностей равны 2 и 6.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

В остроугольном треугольнике $ABC$ проведены высота $BB_1$ и медиана $AA_1$, причём точки $A$, $B$, $B_1$ и $A_1$ лежат на одной окружности. а) Докажите, что треугольник $ABC$ равнобедренный. б) Н…

Внутри квадрата $ABCD$ проведены дуги окружностей с центрами в его вершинах и радиусом ${1} / {3}AB$. На этих дугах с центрами в точках $A$, $B$, $C$ и $D$ взяли точки $K$, $L$, $M$ и $N$ соответствен…