Задание 17 из ЕГЭ по математике (профиль): задача 75
Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из касательных касается окружностей в точках A и C, считая от точки O, а другая, - соответственно в точках B и D.
а) Докажите, что прямая CD перпендикулярна биссектрисе угла, образованного указанными касательными.
б) Найдите расстояние от середины отрезка CD до точки A, если радиусы окружностей равны 3 и 9.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике $ABC$ с прямым углом $C$ $MN$ - средняя линия, параллельная стороне $AC$. Биссектриса угла $A$ пересекает луч $MN$ в точке $K$.
а) Докажите, что $△BKC~△AMK$.
б) Найдите отношение $S_{BKC} : S_{AMK}$,…
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.
а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, …
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…