Задание 17 из ЕГЭ по математике (профиль): задача 75
Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из касательных касается окружностей в точках A и C, считая от точки O, а другая, - соответственно в точках B и D.
а) Докажите, что прямая CD перпендикулярна биссектрисе угла, образованного указанными касательными.
б) Найдите расстояние от середины отрезка CD до точки A, если радиусы окружностей равны 3 и 9.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
В треугольнике $MNP$ проведены медианы $MM_1$ и $NN_1$. На сторонах $MN, MP$ и $NP$ взяты соответственно точки $F, K$ и $E$, причём $FE ‖ MM_1, FK ‖ NN_1$ и $MF : MN = 1 : 3$.
а) Докажите, что $MK = {1}/{6}MP, NE = {1}/{3}PN$.…
ABCD - прямоугольник. Окружность с центром в точке A радиуса AD пересекает продолжение стороны DA в точке K. Прямая KB пересекает прямую CD в точке P, а окружность во второй раз - …