Задание 17 из ЕГЭ по математике (профиль): задача 74
Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC в точках E и F.
а) Докажите, что центр окружности, вписанной в треугольник AEF, лежит на окружности, вписанной в треугольник ABC.
б) Найдите расстояние между центрами этих окружностей, если AB = 11, AC = 14, BK = 3.08, где K - точка пересечения стороны BC и биссектрисы, проведённой из вершины A.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …
В конце 2019 года «Рядом-Банк» предоставил кредит на сумму $20$ млн 630 тысяч рублей на следующих условиях: — в начале каждого квартала 2020 года долг возрастал на $12%$; — в начале ка…
Точка $M$ - центр окружности, описанной около остроугольного треугольника $NPK$, $Q$ - центр вписанной в него окружности, $W$ - точка пересечения высот. Известно, что $∠PNK = ∠MPK + ∠MKP$.
а…