Задание 17 из ЕГЭ по математике (профиль): задача 74

Разбор сложных заданий в тг-канале:

Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC в точках E и F.

а) Докажите, что центр окружности, вписанной в треугольник AEF, лежит на окружности, вписанной в треугольник ABC.

б) Найдите расстояние между центрами этих окружностей, если AB = 11, AC = 14, BK = 3.08, где K - точка пересечения стороны BC и биссектрисы, проведённой из вершины A.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольном треугольнике $ABC$ точка $D$ лежит на катете $AC$, а точка $F$ — на продолжении катета $BC$ за точку $C$, причём $CD=BC$ и $CF=AC$. Отрезки $CM$ и $CN$ — высоты треугольников $ABC$ и $FCD$ …

Окружность касается продолжений сторон AB и BC треугольника ABC соответственно в точках D и E. Точки A, D, E и C лежат на одной окружности, причём точка A лежит между точками B и D…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

В конце 2019 года «Рядом-Банк» предоставил кредит на сумму $20$ млн 630 тысяч рублей на следующих условиях: — в начале каждого квартала 2020 года долг возрастал на $12%$; — в начале ка…