Задание 17 из ЕГЭ по математике (профиль): задача 74
Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC в точках E и F.
а) Докажите, что центр окружности, вписанной в треугольник AEF, лежит на окружности, вписанной в треугольник ABC.
б) Найдите расстояние между центрами этих окружностей, если AB = 11, AC = 14, BK = 3.08, где K - точка пересечения стороны BC и биссектрисы, проведённой из вершины A.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике $ABC$ $AB=8$, $∠ ACB=\arcsin{8} / {11}$. Хорда $DG$ окружности, описанной около треугольника $ABC$, пересекает стороны $AC$ и $BC$ треугольника в точках $F$ и $E$ соответственно. Изве…
В треугольнике $ABC$ $AB=8$, $∠ ACB=\arcsin{8} / {11}$. Хорда $DG$ окружности, описанной около треугольника $ABC$, пересекает стороны $AC$ и $BC$ треугольника в точках $F$ и $E$ соответственно. Изве…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…