Задание 17 из ЕГЭ по математике (профиль): задача 74

Разбор сложных заданий в тг-канале:

Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC в точках E и F.

а) Докажите, что центр окружности, вписанной в треугольник AEF, лежит на окружности, вписанной в треугольник ABC.

б) Найдите расстояние между центрами этих окружностей, если AB = 11, AC = 14, BK = 3.08, где K - точка пересечения стороны BC и биссектрисы, проведённой из вершины A.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

AL — биссектриса равнобедренного треугольника ABC с основанием AC. На продолжении стороны AC за вершину C взята точка K так, что AL=LK. a) Докажите, что треугольник CKL равнобедрен…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по 10% за полугодие, II год — по 20% за по…

Иван и Трофим открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на 10%, а в конце четвёртого года…

В конце 2019 года «Рядом-Банк» предоставил кредит на сумму 20 млн 630 тысяч рублей на следующих условиях: — в начале каждого квартала 2020 года долг возрастал на 12%; — в начале ка…