Задание 17 из ЕГЭ по математике (профиль): задача 74
Окружность, вписанная в остроугольный треугольник ABC, касается сторон AB и AC в точках E и F.
а) Докажите, что центр окружности, вписанной в треугольник AEF, лежит на окружности, вписанной в треугольник ABC.
б) Найдите расстояние между центрами этих окружностей, если AB = 11, AC = 14, BK = 3.08, где K - точка пересечения стороны BC и биссектрисы, проведённой из вершины A.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
— биссектриса равнобедренного треугольника с основанием . На продолжении стороны за вершину взята точка так, что . a) Докажите, что треугольник равнобедрен…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по за полугодие, II год — по за по…
Иван и Трофим открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на , а в конце четвёртого года…