Задание 17 из ЕГЭ по математике (профиль): задача 26
Иван и Трофим открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $10%$, а в конце четвёртого года — на $15%$ по сравнению с его размером в начале года. Кроме этого, в начале третьего и четвёртого годов Иван ежегодно пополнял вклад на $x$ тысяч рублей, где $x$ — натуральное число. Трофим пополнил свой вклад только в начале третьего года, но на сумму $2x$ тысяч рублей. Найдите наименьшее значение $x$, при котором через четыре года на счёте у Трофима стало на целое число тысяч рублей больше, чем у Ивана.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В окружность радиусом $√ 7$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ BAD=60^°$. Хорда $CE$ пересекает диаметр $AD$ в точке $P$ так, что $AP:PD=1:3$. а) Докажите, …
К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.
а) Докажи…
Две окружности касаются внешним образом в точке $P$. Прямая $MN$ касается первой окружности в точке $M$, а второй - в точке $N$.
а) Докажите, что $△MNP$ прямоугольный.
б) Найдите площадь $△MNP$,…