Задание 17 из ЕГЭ по математике (профиль): задача 54

Разбор сложных заданий в тг-канале:

В прямоугольнике ABCD AB = 16, AD = 22. К окружности, радиус которой равен 8, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точке M.

а) Докажите, что CM = 2AM.

б) Найдите длину отрезка AM.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дмитрий Олегович хочет положить определённую сумму денег в банки под некоторые проценты. ${1} / {4}$ этой суммы он кладёт на вклад «A» под $r%$ годовых, а оставшуюся часть денег — на в…

Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из…

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

В прямоугольном треугольнике $ABC$ точка $D$ лежит на катете $AC$, а точка $F$ — на продолжении катета $BC$ за точку $C$, причём $CD=BC$ и $CF=AC$. Отрезки $CM$ и $CN$ — высоты треугольников $ABC$ и $FCD$ …