Задание 17 из ЕГЭ по математике (профиль): задача 21
Внутри квадрата $ABCD$ проведены дуги с центрами в его вершинах и радиусом ${1} / {4}AB$. На дугах окружностей с центрами в точках $A$, $B$, $C$, $D$ взяли точки $K$, $L$, $M$, $N$ соответственно так, что $KLMN$ — квадрат и его вершины не принадлежат сторонам квадрата $ABCD$. При этом прямая $KN$ пересекает сторону $AB$ в точке $P$, а прямая $KL$ пересекает сторону $BC$ в точке $E$ и $PB=3AP$, $CE=3BE$. а) Найдите угол между прямыми $AB$ и $KL$. б) Докажите, что $2<{S_{ABCD}} / {S_{KLMN}}<π-1$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …
В окружность радиусом $√ 7$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ BAD=60^°$. Хорда $CE$ пересекает диаметр $AD$ в точке $P$ так, что $AP:PD=1:3$. а) Докажите, …
К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.
а) Докажи…