Задание 17 из ЕГЭ по математике (профиль): задача 21
Внутри квадрата $ABCD$ проведены дуги с центрами в его вершинах и радиусом ${1} / {4}AB$. На дугах окружностей с центрами в точках $A$, $B$, $C$, $D$ взяли точки $K$, $L$, $M$, $N$ соответственно так, что $KLMN$ — квадрат и его вершины не принадлежат сторонам квадрата $ABCD$. При этом прямая $KN$ пересекает сторону $AB$ в точке $P$, а прямая $KL$ пересекает сторону $BC$ в точке $E$ и $PB=3AP$, $CE=3BE$. а) Найдите угол между прямыми $AB$ и $KL$. б) Докажите, что $2<{S_{ABCD}} / {S_{KLMN}}<π-1$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …
$AL$ — биссектриса равнобедренного треугольника $ABC$ с основанием $AC$. На продолжении стороны $AC$ за вершину $C$ взята точка $K$ так, что $AL=LK$. a) Докажите, что треугольник $CKL$ равнобедрен…
В прямоугольном треугольнике $ABC$ проведена высота $CH$ к гипотенузе $AB$. На катетах $AC$ и $BC$ отмечены точки $R$ и $V$ так, что треугольник $RHV$ прямоугольный. а) Докажите, что треугольник $RVH$ …