Задание 17 из ЕГЭ по математике (профиль): задача 21
Внутри квадрата $ABCD$ проведены дуги с центрами в его вершинах и радиусом ${1} / {4}AB$. На дугах окружностей с центрами в точках $A$, $B$, $C$, $D$ взяли точки $K$, $L$, $M$, $N$ соответственно так, что $KLMN$ — квадрат и его вершины не принадлежат сторонам квадрата $ABCD$. При этом прямая $KN$ пересекает сторону $AB$ в точке $P$, а прямая $KL$ пересекает сторону $BC$ в точке $E$ и $PB=3AP$, $CE=3BE$. а) Найдите угол между прямыми $AB$ и $KL$. б) Докажите, что $2<{S_{ABCD}} / {S_{KLMN}}<π-1$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.
а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, …
В трапеции $ABCD$, в которой $AD ‖ BC$, точка $M$ точка пересечения боковых сторон $AB$ и $CD$. Прямая $MN$ пересекает основания $AD$ и $BC$ в точках $P$ и $Q$ соответственно, точка $N$ точка пересечени…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…