Задание 17 из ЕГЭ по математике (профиль): задача 20
В окружности с центром $O$ проведён диаметр $MN$, отмечены точка $K$ — середина дуги $MN$, точка $E$ — середина хорды $MK$ и точка $B$ — середина дуги $KN$, проведена хорда $AB$, которая проходит через точку $E$. а) Докажите, что $AE:BE=1:3$. б) На отрезке $AB$ как на стороне построен прямоугольник $ABCD$ так, что его вершины $C$ и $D$ тоже лежат на окружности. Найдите площадь прямоугольника $ABCD$, если диаметр окружности равен $3√ 7$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
В треугольнике $ABC$ проведены высоты $AM$ и $BN$. На них из точек $M$ и $N$ опущены перпендикуляры $MK$ и $NF$ соответственно.
а) Докажите, что прямые $KF$ и $AB$ параллельны.
б) Найдите отношени…
Две окружности касаются внешним образом в точке $K$, через которую проведена их общая касательная, на которой отмечена точка $M$. Через точку $M$ проведены две прямые: одна пересекает пе…