Задание 17 из ЕГЭ по математике (профиль): задача 20
В окружности с центром $O$ проведён диаметр $MN$, отмечены точка $K$ — середина дуги $MN$, точка $E$ — середина хорды $MK$ и точка $B$ — середина дуги $KN$, проведена хорда $AB$, которая проходит через точку $E$. а) Докажите, что $AE:BE=1:3$. б) На отрезке $AB$ как на стороне построен прямоугольник $ABCD$ так, что его вершины $C$ и $D$ тоже лежат на окружности. Найдите площадь прямоугольника $ABCD$, если диаметр окружности равен $3√ 7$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Две окружности касаются внешним образом в точке $P$. Прямая $MN$ касается первой окружности в точке $M$, а второй - в точке $N$.
а) Докажите, что $△MNP$ прямоугольный.
б) Найдите площадь $△MNP$,…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.
а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, …