Задание 17 из ЕГЭ по математике (профиль): задача 17
В окружность радиусом $8$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ ABC=120^°$. Хорда $CM$ пересекает диаметр $AD$ в точке $P$ так, что длина отрезка $AP=4$. а) Докажите, что $MB$ — биссектриса угла $AMC$. б) Найдите площадь треугольника $PMD$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
Дмитрий Олегович хочет положить определённую сумму денег в банки под некоторые проценты. ${1} / {4}$ этой суммы он кладёт на вклад «A» под $r%$ годовых, а оставшуюся часть денег — на в…
В трапеции $ABCD$, в которой $AD ‖BC$, точка $O$ - точка пересечения диагоналей трапеции. Через эту точку проведена прямая, параллельная основаниям и пересекающая боковые стороны в точка…