Задание 17 из ЕГЭ по математике (профиль): задача 17

Разбор сложных заданий в тг-канале:

В окружность радиусом $8$ вписана трапеция $ABCD$, причём её основание $AD$ является диаметром, а $∠ ABC=120^°$. Хорда $CM$ пересекает диаметр $AD$ в точке $P$ так, что длина отрезка $AP=4$. а) Докажите, что $MB$ — биссектриса угла $AMC$. б) Найдите площадь треугольника $PMD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

В треугольнике $ABC$ проведены высоты $AM$ и $BN$. На них из точек $M$ и $N$ опущены перпендикуляры $MK$ и $NF$ соответственно.

а) Докажите, что прямые $KF$ и $AB$ параллельны.

б) Найдите отношени…

Квадрат $ABCD$ вписан в окружность. Хорда $CF$ пересекает его диагональ $BD$ в точке $L$. а) Докажите, что $CL⋅ CF=AB⋅ AD$. б) Найдите отношение $CL$ и $LF$, если $∠ BCF=30°$.

Дмитрий Олегович хочет положить определённую сумму денег в банки под некоторые проценты. ${1} / {4}$ этой суммы он кладёт на вклад «A» под $r%$ годовых, а оставшуюся часть денег — на в…