Задание 17 из ЕГЭ по математике (профиль): задача 43
Две окружности касаются внешним образом в точке $K$, через которую проведена их общая касательная, на которой отмечена точка $M$. Через точку $M$ проведены две прямые: одна пересекает первую окружность в точках $A$ и $B$ (точка $A$ лежит между точками $M$ и $B$), а другая — вторую окружность в точках $C$ и $D$ (точка $C$ находится между $M$ и $D$). Прямые $BC$ и $AD$ пересекаются в точке $L$. a) Докажите, что точки $A$, $B$, $C$ и $D$ лежат на одной окружности. б) Найдите отношение площадей треугольников $ABL$ и $CDL$, если $BM=10$, $MC=4$, $MK=8$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
В треугольнике $ABC$ проведены высоты $AM$ и $BN$. На них из точек $M$ и $N$ опущены перпендикуляры $MK$ и $NF$ соответственно.
а) Докажите, что прямые $KF$ и $AB$ параллельны.
б) Найдите отношени…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…