Задание 17 из ЕГЭ по математике (профиль): задача 43

Разбор сложных заданий в тг-канале:

Две окружности касаются внешним образом в точке $K$, через которую проведена их общая касательная, на которой отмечена точка $M$. Через точку $M$ проведены две прямые: одна пересекает первую окружность в точках $A$ и $B$ (точка $A$ лежит между точками $M$ и $B$), а другая — вторую окружность в точках $C$ и $D$ (точка $C$ находится между $M$ и $D$). Прямые $BC$ и $AD$ пересекаются в точке $L$. a) Докажите, что точки $A$, $B$, $C$ и $D$ лежат на одной окружности. б) Найдите отношение площадей треугольников $ABL$ и $CDL$, если $BM=10$, $MC=4$, $MK=8$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дан выпуклый четырёхугольник $KLMN$. а) Докажите, что отрезки $AC$ и $BD$, соединяющие середины его противоположных сторон, делят друг друга пополам. б) Найдите площадь четырёхугольника …

В прямоугольном треугольнике $ABC$ точка $N$ лежит на катете $BC$, а точка $M$ — на продолжении катета $AC$ за точку $C$, причём $AC=CN$ и $BC=CM$. Отрезки $CH$ и $CK$ — высоты треугольников $ABC$ и $CMN$ …

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…