Задание 17 из ЕГЭ по математике (профиль): задача 9
Дана равнобедренная трапеция $ABCD$ с основаниями $AD$ и $BC$. Окружность с центром $O$, построенная на боковой стороне $AB$ как на диаметре, касается боковой стороны $CD$ и второй раз пересекает большее основание $AD$ в точке $L$, точка $M$ — середина $CD$. а) Докажите, что четырёхугольник $DLOM$ — параллелограмм. б) Найдите $AD$, если $∠ BAD=60°$ и $BC=3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции $ABCD$, в которой $AD ‖BC$, точка $O$ - точка пересечения диагоналей трапеции. Через эту точку проведена прямая, параллельная основаниям и пересекающая боковые стороны в точка…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
В трапеции $ABCD$ основания $BC$ и $AD$ равны $3$ и $9$ соответственно. Из точки $K$, лежащей на стороне $CD$, опущен перпендикуляр $KL$ на сторону $AB$. Известно, что $L$ — середина стороны $AB$, $CL=4$ …