Задание 17 из ЕГЭ по математике (профиль): задача 29
В параллелограмме $ABCD$ угол $B$ тупой. На продолжении стороны $AD$ за точку $D$ взята такая точка $E$, что $CD=CE$, а на продолжении стороны $CD$ за точку $D$ взята такая точка $F$, что $AD=AF$. а) Докажите, что треугольник $BE F$ равнобедренный. б) Найдите $EF$, если $AC=24$, $\tg∠ BAD={12} / {5}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Две окружности касаются внешним образом в точке $K$, через которую проведена их общая касательная, на которой отмечена точка $M$. Через точку $M$ проведены две прямые: одна пересекает пе…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
В прямоугольном треугольнике $ABC$ точка $D$ лежит на катете $AC$, а точка $F$ — на продолжении катета $BC$ за точку $C$, причём $CD=BC$ и $CF=AC$. Отрезки $CM$ и $CN$ — высоты треугольников $ABC$ и $FCD$ …