Задание 17 из ЕГЭ по математике (профиль): задача 51
Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из точки $O_1$ проведена касательная $O_1K$ ко второй окружности ($K$ - точка касания), а из точки $O_2$ проведена касательная $O_2L$ к первой окружности ($L$ - точка касания), точки $K$ и $L$ лежат по разные стороны от прямой $O_1O_2$.
а) Докажите, что $∠O_1KL = ∠O_1O_2L$.
б) Найдите радиус меньшей окружности, если дополнительно известно, что он в 4 раза меньше радиуса большей окружности, а площадь четырёхугольника $O_1KO_2L$ равна $54 + 9√6$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Точка $B$ лежит на отрезке $AC$. Прямая, проходящая через точку $A$, касается окружности с диаметром $BC$ в точке $F$ и второй раз пересекает окружность с диаметром $AB$ в точке $M$. Продолжение…
Окружность касается продолжений сторон AB и BC треугольника ABC соответственно в точках D и E. Точки A, D, E и C лежат на одной окружности, причём точка A лежит между точками B и D…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…