Задание 17 из ЕГЭ по математике (профиль): задача 50

Разбор сложных заданий в тг-канале:

Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из точки $O_1$ проведена касательная $O_1T$ ко второй окружности ($T$ - точка касания), а из точки $O_2$ проведена касательная $O_2S$ к первой окружности ($S$ - точка касания), точки $S$ и $T$ лежат по одну сторону от прямой $O_1O_2$.

а) Докажите, что треугольники $SMT$ и $O_1MO_2$ подобны, если $M$ - точка пересечения $O_1T$ и $O_2S$.

б) Найдите отношение площади треугольника $O1SO2$ к площади треугольника $O_1TO_2$, если ${O_1S}/{O_2T}= {2}/{5}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Окружность касается сторон AB и BC треугольника ABC соответственно в точках D и E. Точки A, D, E и C лежат на одной окружности.

а) Докажите, что треугольник равнобедренный.

б) Найд…

Биссектриса острого угла параллелограмма пересекает его сторону в точке K. Окружность радиусом 3 проходит через точку пересечения диагоналей и касается трёх сторон параллелограмма,…

В конце 2019 года «Рядом-Банк» предоставил кредит на сумму $20$ млн 630 тысяч рублей на следующих условиях: — в начале каждого квартала 2020 года долг возрастал на $12%$; — в начале ка…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…