Задание 17 из ЕГЭ по математике (профиль): задача 50

Разбор сложных заданий в тг-канале:

Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из точки $O_1$ проведена касательная $O_1T$ ко второй окружности ($T$ - точка касания), а из точки $O_2$ проведена касательная $O_2S$ к первой окружности ($S$ - точка касания), точки $S$ и $T$ лежат по одну сторону от прямой $O_1O_2$.

а) Докажите, что треугольники $SMT$ и $O_1MO_2$ подобны, если $M$ - точка пересечения $O_1T$ и $O_2S$.

б) Найдите отношение площади треугольника $O1SO2$ к площади треугольника $O_1TO_2$, если ${O_1S}/{O_2T}= {2}/{5}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В окружности с центром $O$ проведён диаметр $MN$, отмечены точка $K$ — середина дуги $MN$, точка $A$ — середина хорды $MK$ и точка $B$ — середина дуги $KN$.

а) Докажите, что $AB:MN=√ 3:√ 8$.

б) На…

В конце 2019 года «Рядом-Банк» предоставил кредит на сумму $20$ млн 630 тысяч рублей на следующих условиях: — в начале каждого квартала 2020 года долг возрастал на $12%$; — в начале ка…

Точки $A$, $B$, $C$, $D$ и $E$ лежат на окружности в указанном порядке, причём $AB=AE=ED$, а прямые $AC$ и $BD$ перпендикулярны. Отрезки $BD$ и $CE$ пересекаются в точке $K$. а) Докажите, что прямая $AD$ …

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…