Задание 17 из ЕГЭ по математике (профиль): задача 49

Разбор сложных заданий в тг-канале:

Задан треугольник $ABC$, каждая сторона которого равна $2$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$. Прямая $l$ проходит через точку $A$ и перпендикулярна отрезку, проведённому в $A$ из точки пересечения высот $△ABC$. $K$ - точка пересечения прямых $l$ и $BD$. Длина отрезка $AK$ равна $1$.

а) Докажите, что $BK·DK = 1$.

б) Найдите длину отрезка $AD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дана равнобедренная трапеция $ABCD$ с основаниями $AD$ и $BC$. Окружность с центром $O$, построенная на боковой стороне $AB$ как на диаметре, касается боковой стороны $CD$ и второй раз пересек…

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Точка $P$ - центр окружности, описанной около остроугольного треугольника $MNQ, K$ - центр вписанной в него окружности, $O$ - точка пересечения высот. Известно, что $∠NMQ = ∠PNQ + ∠PQN$.

а…