Задание 17 из ЕГЭ по математике (профиль): задача 30
Трапеция $ABCD$ с б\'ольшим основанием $AD$ вписана в окружность. $BH$ — высота трапеции. Прямая $BH$ вторично пересекает окружность в точке $T$. а) Докажите, что прямая $AT$ и диагональ трапеции $AC$ перпендикулярны. б) Прямые $AD$ и $CT$ пересекаются в точке $P$. Найдите $AD$, если радиус описанной около трапеции $ABCD$ окружности равен $28$, $∠ BAC=30°$, а площадь треугольника $BCT$ относится к площади четырёхугольника $BCPH$ как $49:48$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
Задан треугольник $ABC$, каждая сторона которого равна $2$. За пределами треугольника дана точка $D$ так, что $∠ADC = 120°$. Прямая $l$ проходит через точку $A$ и перпендикулярна отрезку, пров…
Дана равнобедренная трапеция $ABCD$ с основаниями $AD$ и $BC$. Окружность с центром $O$, построенная на боковой стороне $AB$ как на диаметре, касается боковой стороны $CD$ и второй раз пересек…