Задание 17 из ЕГЭ по математике (профиль): задача 59

Разбор сложных заданий в тг-канале:

К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.

а) Докажите, что периметр треугольника MNC равен стороне треугольника ABC.

б) Найдите MT : TN, если известно, что CM : MA = 1 : 4.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

В трапеции $ABCD$, в которой $AD ‖BC$, точка $O$ - точка пересечения диагоналей трапеции. Через эту точку проведена прямая, параллельная основаниям и пересекающая боковые стороны в точка…

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Точка $B$ лежит на отрезке $AC$. Прямая, проходящая через точку $A$, касается окружности с диаметром $BC$ в точке $F$ и второй раз пересекает окружность с диаметром $AB$ в точке $K$. Продолжение…