Задание 17 из ЕГЭ по математике (профиль): задача 59
К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.
а) Докажите, что периметр треугольника MNC равен стороне треугольника ABC.
б) Найдите MT : TN, если известно, что CM : MA = 1 : 4.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
В прямоугольном треугольнике $ABC$ проведена высота $CH$ к гипотенузе $AB$. На катетах $AC$ и $BC$ отмечены точки $R$ и $V$ так, что треугольник $RHV$ прямоугольный. а) Докажите, что треугольник $RVH$ …