Задание 17 из ЕГЭ по математике (профиль): задача 33
Вне квадрата $ABCD$ с центром $O$ взята точка $K$, причём
$∠ BKC=90^°$. а) Докажите, что $∠ BOK=∠ BCK$. б) Прямая $KO$ пересекает сторону $AD$ квадрата в точке $L$. Найдите $KL$, если известно, что $BK=10$ и $CK=24$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Трапеция $ABCD$ с б\'ольшим основанием $AD$ вписана в окружность. $BH$ — высота трапеции. Прямая $BH$ вторично пересекает окружность в точке $T$. а) Докажите, что прямые $AC$ и $AT$ перпендикуля…
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …
В трапеции ABCD точка M - середина основания AD, точка N выбрана на стороне AB так, что площадь четырёхугольника ANLM равна площади треугольника CLD, где L - точка пересечения отре…