Задание 17 из ЕГЭ по математике (профиль): задача 32
Точки $A$, $B$, $C$, $D$ и $E$ лежат на окружности в указанном порядке, причём $AB=AE=ED$, а прямые $AC$ и $BD$ перпендикулярны. Отрезки $BD$ и $CE$ пересекаются в точке $K$. а) Докажите, что прямая $AD$ пересекает отрезок $KE$ в его середине. б) Найдите площадь треугольника $BCK$, если $CE=5$, $AB=2$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В равнобедренной трапеции $ABCD$ меньшее основание $BC$ равно боковой стороне. На плоскости взята точка $E$ так, что прямая $BE$ перпендикулярна $AD$ и прямая $CE$ перпендикулярна $BD$. а) Докаж…
В окружности с центром $O$ проведён диаметр $MN$, отмечены точка $K$ — середина дуги $MN$, точка $E$ — середина хорды $MK$ и точка $B$ — середина дуги $KN$, проведена хорда $AB$, которая проходит че…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…