Задание 17 из ЕГЭ по математике (профиль): задача 71
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $E$ и $F$.
а) Докажите что центр окружности, вписанной в треугольник $BEF$, лежит на окружности, вписанной в треугольник $ABC$.
б) Найдите расстояние между центрами этих окружностей, если $AB = BC, BE = 13, EF = 10, S_{BEF} : S_{ABC} = 4 : 9$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
В прямоугольном треугольнике $ABC$ проведена высота $CH$ к гипотенузе $AB$. На катетах $AC$ и $BC$ отмечены точки $R$ и $V$ так, что треугольник $RHV$ прямоугольный. а) Докажите, что треугольник $RVH$ …
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …