Задание 14 из ЕГЭ по математике (профиль)
Тема: «Метод интервалов»
В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=3√ 2$, $AB=3$, $AD=8$. Точка $K$ делит отрезок $A_1D_1$ в отношении $3:1$, считая от вершины $A_1$. а) Докажите, что п…
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
В треугольной пирамиде $ABCD$ точки $M$ и $F$ являются серединами рёбер $BC$ и $AD$ соответственно, а точка $E$ — точка пересечения медиан грани $ABC$. а) Докажите, что прямая $DE$ проходит через …
Дана правильная треугольная пирамида $SABC$, $AB=18$. Высота $SO$, проведённая к основанию, равна 10, точка $M$ — середина $AS$, точка $K$ — середина $BC$. Плоскость, проходящая через точку $M$ и …
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 18, а высота $SO$ равна 40. Точка $L$ — середина бокового ребра $SC$, точка $M$ — середина ребра $CD$. Плоскость $ABL$ перес…
Ребро куба $ABCDA_1B_1C_1D_1$ равно $8$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=2$. а) Докажите, что косинус угла меж…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $6$, а боковые рёбра равны $8$. Точка $K$ — середина ребра $BB_1$, на ребре $AA_1$ отмечена точка $L$ так, что $AL:LA_1=1:7$.…
В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник $ABC$ с основанием $AC$. Точка $D$ — середина ребра $A_1B_1$, а точка $F$ делит ребро $AC$ в отношении $AF:FC=1:3$.…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна $8$, а боковое ребро $SA$ равно $2√ {33}$. На рёбрах $AB$ и $SB$ отмечены точки $K$ и $L$ соответственно, причём $AK=2$, $SL:LB=1:6$.…
В правильной треугольной пирамиде $SABC$ сторона основания $AB=12$, а боковое ребро $SA=10$. На рёбрах $AB$ и $SC$ отмечены точки $K$ и $M$ соответственно, причём $AK:KB=SM:MC=1:5$, плоскость $α$ со…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB=10$, а боковое ребро $SA=15$. На рёбрах $AB$ и $SB$ отмечены точки $M$ и $K$ соответственно, причём $AM={40} / {7}$, $SK=6$. а) До…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ с рёбрами $AB=AD=7$, $DD_1=9$, точки $M$, $N$ и $K$ лежат на рёбрах $AB$, $BB_1$ и $BC$ соответственно, причём $BM=BK=2$, $BN=3$. Через точку $D$ про…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ с рёбрами $AB=BC=6$, $ AA_1=12$, точки $M$ и $K$ — середины $AB$ и $BC$ соответственно, точка $N$ лежит на ребре $BB_1$, причём $BN=6$. Через точ…
В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=√ {14}$, $AB=2$, $AD=6$. Точка $K$ делит отрезок $A_1D_1$ в отношении $2:1$, считая от вершины $A_1$. а) Докажите, что…
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
$SABCD$ — правильная четырёхугольная пирамида с основанием $ABCD$, боковое ребро которой равно ребру основания. Отрезок, соединяющий центр треугольника $SAB$ и центр основания пирамиды, …
Боковое ребро правильной шестиугольной призмы проходит через вершину правильного октаэдра, а противоположное ему ребро призмы соединяет центры противоположных граней октаэдра. а) Д…
В треугольной пирамиде $MNPS$ точки $A$ и $B$ являются серединами рёбер $MN$ и $PS$, а точка $C$ — точка пересечения медиан грани $MNP$. а) Докажите, что прямая $SC$ проходит через середину отрезк…
В основании пирамиды $SABC$ лежит прямоугольный треугольник $ABC$ с гипотенузой $AB$. Проекцией точки $S$ на плоскость $ABC$ является точка $O$ — середина отрезка $AB$. а) Докажите, что $BS=CS$. б…
В основании пирамиды $SABC$ лежит прямоугольный треугольник $ABC$ с гипотенузой $AB$. Проекцией точки $S$ на плоскость $ABC$ является точка $O$ — середина отрезка $AB$. а) Докажите, что $AS=CS$. б…
Задача четырнадцать из ЕГЭ по математике рассматривает неравенства. Их в вариантах экзаменационных билетов — значительное количество: рациональные, иррациональные, показательные, логарифмические. В отдельную категорию вынесены выражения с логарифмами по переменному основанию, также могут встретиться с модулем, а особые сложности у выпускников обычно вызывает тема «Смешанные неравенства», когда выражение содержит в себе признаки двух видов, например, показательных и логарифмических.
Построение всех условий номера 14 одинаково — вам предлагается некое выражение, которое вы должны решить. Можно использовать черновик (его использование допустимо правилами проведения экзамена), окончательный результат разборчивым почерком записывается в бланк задания.
Как показывают данные прошлогодних экзаменов, задание 14 оказалось достаточно сложным для многих учеников. Однако те выпускники, которые на «хорошо» или «отлично» знают материал об уравнениях, столь же успешно справятся и с решением неравенств.
Для получения правильного ответа на задачу этого экзаменационного билета вам придется предварительно повторить значительное количество учебного материала по нескольким дисциплинам. Основные приемы решения рассматривает арифметика, более сложные примеры были изучены вами в курсе математики. Тригонометрические варианты рассматривает тригонометрия, а логарифмические и показательные — алгебра. Подготовку вы можете вести по любому школьному учебнику, рекомендованному Министерством образования к применению в российских школах, возможно, вам понадобится помощь учителя или репетитора. Для проверки усвоенной теории можно обратиться к онлайн тестам по математике.